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Abstract 
 

The interaction of peristalsis with Heat transfer of Viscoelastic Rivlin 
Erickson fluid in a two-dimensional channel of the flexible wall through a 
porous medium under the magnetic field has been studied. Assuming that the 
wave length of the peristaltic wave is large in comparison to the mean half 
width of the channel, a perturbation method of solution is obtained in terms of 
wall slope parameter and closed form expressions have been derived for 
stream function, temperature and heat transfer coefficient. Furthermore, the 
effects of elasticity parameters and magnetic parameter on average 
temperature, average heat transfer have been discussed. It has been observed 
that the average temperature gradually enhances with increase in Hartman 
number M and the average heat transfer depreciates with increase in elastic 
parameters E1 and E2. 
 
Keywords: Peristaltic transport, Viscoelastic fluid, Heat transfer, Porous 
medium. 

 
 
Introduction 
The Magneto hydrodynamic (MHD) flow of a fluid in a channel with peristalsis is of 
interest in connection with certain flow problems of the movement of conductive 
physiological fluids e.g. the blood and blood pump machines, and with the need for 
theoretical research on the operation of a peristaltic MHD Compressor. Blood is 
regarded as a suspension of small cells in plasma.  Moreover, it is known that in 
arteries, blood flows in two layers, a plasma layer near the wall and a core layer 
consisting of suspension of cells in the plasma. Since the red blood cells, which 
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contain iron, are magnetic in nature, the core may be treated as magnetic field.  
 The effect of moving magnetic field on blood flow was studied by Sud et al.[19] 
and they observed that the effect of suitable moving magnetic field accelerates the 
speed of blood. Prasada Rao et al [8] studied Peristaltic transport of a viscous 
conduction fluid under a uniform magnetic field. Deshikachar and Rama Chandra Rao 
[3] investigated the effect of a magnetic field on the blood oxygenation process. 
Mekheimer, Kh.S., [11] discussed the peristaltic flow of blood under effect of a 
magnetic field in a non-uniform channels. Radhakrishnamacharya and Radhakrishna 
Murthy [14] have studied Heat Transfer to peristaltic transport in a uniform channel in 
the presence of magnetic field. Maruthi Prasad et al., [10] discussed peristaltic 
transport of a Hershel-Bulkley fluid in a channel in the presence of magnetic field of 
low intensity. Rathod and Hosurker Shrikanth [16] studied the flow of RivlinErickson 
incompressible fluid through an inclined channel with two parallel flat walls under the 
influence of magnetic field and the MHD flow of RivlinEricksen fluid between two 
infinite parallel inclined plates. Mittra and Prasad [12] studied peristaltic transport in a 
two-dimensional channel considering the elasticity of the walls under the 
approximation of small amplitude ratio with dynamic boundary conditions. 
 The study of magnetic field with porous medium is very important both from 
theoretical as well as practical point of view, because most of natural phenomena of 
the fluid flow are connected with porous medium. For e.g., filtration of fluids, 
underground water, oil reservoir and fluid through pipes. Hayat,T, et.al.[5 ] studied 
effect of Heat transfer on the peristaltic flow of an electrically conducting fluid in a 
porous space. D.V. Krishna and Mallikarjuna Goud [9] studied the effect of a 
magnetic field on the peristaltic flow through a porous medium in a non uniform 
channel and its application to blood flow. Sobh [18] studied the slip flow of peristaltic 
transport of a magneto-Newtonian fluid through a porous medium with heat transfer. 
Kothandapani, M. Srinivas, S.,[7] studied On the influence of wall properties in the 
MHD  peristaltic transport with heat transfer and porous medium. It has been 
observed that under the influence magnetic field, flow separation occurred only at 
high Reynolds number compared to the non-magnetic case. 
 Keeping the above facts in view, in this chapter we discuss the interaction of 
peristalsis with heat transfer and wall properties of Viscoelastic Rivlin Erickson fluid 
through a porous medium in the presence of Magnetic Field. Assuming that the wave 
length of the peristaltic wave is large in comparison to the mean-half width of the 
channel, a perturbation solution has been obtained in terms of the wall slope 
parameter and closed form expressions have been derived for stream function, 
velocity, temperature, heat transfer coefficient. The effects of elasticity parameters 
and magnetic parameter on temperature, heat transfer coefficient, average 
temperature, average heat transfer, pressure (rise) drop and frictional force have been 
discussed.  
 
 
Formulation of the Problem 
We consider a peristaltic flow of an incompressible Viscoelastic Rivlin Erickson fluid 
through porous medium under uniform transverse magnetic field in a two dimensional 
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channel of uniform thickness. The channel is symmetric with respect to its axis and 
walls of are assumed to be flexible and are taken as a stretched membrane on which 
traveling sinusoidal waves of moderate amplitude are imposed. 
 The geometry of the flexible walls are represented by  

  
) t c  x( 

λ
 π2Sin   ad)t  x,( ηy −+==

 
(2.1) 

 
 Where, ‘d’ is the mean half width of the channel ‘ a ’ is the amplitude of the 
peristaltic wave, ‘ c ’ is the wave velocity, ‘ λ ’ is the wave length and ‘c’ is the phase 
speed of the wave. 
 
The equations governing the two-dimensional flow of Rivlin Erickson fluid are 
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 Where u and v are the velocity components, ‘p’ is the fluid pressure, ‘ ρ ’ is the 
density of the fluid, ‘β ’ is the coefficient of Visco-elasticity, ‘ ν ’ is the coefficient of 
kinematic viscosity, k1 is the permeability of the porous medium, eμ is the magnetic 
permeability and 0H is the magnetic field intensity and σ is the conductivity, ‘k’ is the 
coefficient of thermal conductivity, ‘Cp’ is the specific heat at constant pressure, ‘T’ is 
the temperature. 
 The governing equation of motion of the flexible wall may be expressed as  
 
  L (η) = p – p0 (2.6) 
 
 Where ‘L’ is an operator, which is used to represent the motion of stretched 



280  T. Raghunatha Rao and Dr. D.R.V. Prasada Rao 

 

membrane with damping forces such that  

  

2 2   L T m C2 2 t x  t
* ∂ ∂ ∂≡ − + +

∂∂ ∂
 (2.7)

  
 Here T* is the elastic tension in the membrane, m is the mass per unit area and C 
is the coefficient of viscous damping forces, p0 is the pressure on the outside surface 
of the wall due to tension in the muscles. For simplicity, we assume 0P0 = .  

 The horizontal displacement assumed to be zero, gives 
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(2.8) 

 
 The dynamic boundary conditions at the flexible walls [12] are     
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 The conditions on temperature are 
  T = T0   on   ηy −= ,   T = T1     on     ηy =  (2.10)  
 
 In view of the incompressibility of the fluid and two-dimensionality of the flow, 
we introduce the Stream function‘ ψ ‘such that 
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and introducing non-dimensional quantities  
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in equations of motion and the conditions (2.3) – (2.5), (2.8) – (2.10), and eliminating 
‘p’, we finally get (after dropping primes) 
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 The non-dimensional parameters are 
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Method of Solution 
We seek perturbation solution for the stream function (ψ), pressure gradient (p) and 
temperature coefficient (θ) in terms of small parameter δ  as follows:  

  ψ = ψ +δ ψ +...... 0 1  (3.1) 
  θ = θ + δ θ +...... 0 1  (3.2) 
 
 Substituting (3.1-3.2) in equations (2.13-2.17) and collecting the coefficients of 
various powers of δ  
 
The zeroth order equations are      
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The corresponding boundary conditions are

 
0 ψ 0    on    y  η

 y
∂

= = ±
∂

 (3. 5)
 

0 0
3 3 3 2 ψ ψ   R 2M  =  E E E  η     on   y  η1 2 33 3 2D  x  t y  x  x  t  a y
∂ ∂ ∂ ∂

+ + = ±
∂ ∂∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞ ∂
− + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

  (3.6)   

0 0θ 0    on    y η ,        θ 1    on    y η= = − = =                             (3.7) 
 
 
 
 



Interaction of Peristalsis with Heat Transfer 283 

 

The first order equations are 
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The corresponding boundary conditions are 
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Zeroth -order problem 
On solving the equations (3.3-3.4), subject to the conditions (3.5-3.7), we get 
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First -order problem     
On solving the equations (3.8 - 3.9), subject to the conditions (3.10-3.12), we get 
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The heat transfer coefficient in terms of wall slope parameter ‘δ’ is 
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The average temperature,    is given by 

  ∫=
1

0
dt  θ θ  (3.18) 

 
The average Heat transfer,    is given by 

  ∫=
1

0
dt  z z  (3.19)

 
 

 
 It can be noticed that when Inverse Darcy number 1

aD 0− = ,
 

Visco-elastic 
parameter S = 0 and Hartman number M = 0, this problem reduces to 
Radhakrishnamacharya and Srinivasulu [15]. 
 The constants 1 2 9 2 3 21 1 16A ,A ,...A , B ,B ,B ,g ,g ,....g  are given in appendix.  
 
 
Results and Discussion 
In this analysis we analyzed effect of temperature variation on the peristaltic action of 
Viscoelastic RivlinErickson fluid in the presence Magnetic field through porous 
medium for different values of   elastic parameters Reynolds number ( R ),the rigidity 
of the wall (E1), the stiffness of the wall (E2), damping nature of the wall (E3) and 
Hartman number (M).

   
 

 The average temperature θ  with different parameters is depicted in figs.(4.1-4.5). 
From figs.(4.1-4.3) ,it is observed that average temperature θ  depreciates in the 
region 0.1 ≤ y ≤ 0.9 with increase in R, E1 and E2  and the enhancement is marginal at 
the boundary, while we observe that the depreciation in average temperature θ  with 
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E3 is more significant at the centre of the channel y = 0 than at the boundary fig.(4.4). 
From fig.(4.5) we observe that the average temperature θ  gradually enhances with 
increase in Hartman number M. It is more significant at the centre of the channel than 
at the boundary and is insignificant at y =1. 
 The average heat transfer z  is numerically evaluated and graphically depicted in 
figs.(4.6-4.10) for different parameters. The variation of average heat transfer z  with 
Reynolds number R is shown in fig.(4.6). It is observed that the variation of z  with R 
is almost linear in the region y = 0 to y = 0.6 and z  graphically enhances in 
magnitude in the remaining region, the variation of z  at y = 0 is comparably smaller 
than at y = 1. From figs.4.7 & 4.8 we find that z depreciates with increase in E1 and 

E2. The average heat transfer z  is appreciably large at boundary of the channel y = 1, 
than at the centre of the channel y = 0, while the variation of average heat transfer z  
with E3 shows that z  enhances marginally at y = 0 fig.(4.9). From fig.(4.10) we find 
that z  increases in the region  0 ≤ y ≤ 0.6, for higher Hartman number M, smaller the 
z decreases.      

 
 

Fig.4.1-Effect of R on θ  (ε=0.01, δ=0.01, E1=0.1, E2=0.2, E3=0.3, α =10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 

 

 
 

Fig.4.2-Effect of E1 on θ  (ε=0.01, δ=0.01, E2=0.2, E3=0.3, α =10, R=10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 
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Fig.4.3-Effect of E2 on θ  (ε=0.01, δ=0.01, E1=0.1, E3=0.3, α =10, R=10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 

 

 
 

Fig.4.4-Effect of E3 on θ  (ε=0.01, δ=0.01, E1=0.1, E2=0.2, α =10, R=10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 

 

 
 

Fig.4.5-Effect of M on θ    (ε=0.01, δ=0.01, E1=0.1, E2=0.2, E3=0.3, α =10, R=10, Pr 
=0.7, S=0.5, E=0.5, Da=10000) 
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Fig.4.6-Effect of R on Z     (ε=0.01, δ=0.01, E1=0.1, E2=0.2, E3=0.3, α =10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 

 

 
 

Fig.4.7-Effect of E1 on Z  (ε=0.01, δ=0.01, E2=0.2, E3=0.3, R=10, α =10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 

 

 
 

Fig.4.8-Effect of E2 on Z  (ε=0.01, δ=0.01, E1=0.1, E3=0.3, R=10, α =10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 
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Fig.4.9-Effect of E3 on Z  (ε=0.01, δ=0.01, E1=0.1, E2=0.2, R=10, α =10, S=0.5, 
E=0.5, Pr =0.7, M=10, Da=10000) 

 

 
 

Fig.4.10-Effect of M on Z    (ε=0.01, δ=0.01, E1=0.1, E2=0.2, E3=0.3, α =10, R=10, 
E=0.5,Pr =0.7, S=0.5, Da=10000) 
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Appendix 
 

R 2α M  
Da

= +
     

η 1  ε Sin 2 π (x t) = + −
ε 3 2A [ 8π  Cos 2π (x t) (E E ) 4 E π  Sin 2π (x - t)]1 1 2 32α

= − + −
 

ε 3 2A  Sech α η [ 8π  Cos 2π (x t) (E E ) 4 E π  Sin 2π (x - t)]2 1 2 33α
= − − + −

 

4 10 9 10

2 8 11

1 12 3A  (α B B α (d d d )) Cosh α η (α d B ) η Sinh α η3 1 2 24 3α α
B 13        Cosh 2 α η (d d d )3 24α α

= − − + + + − +

− + +
 

2 8 11 10

4 10 9

1 12 3A   (d d α d ) Sech α η (4 α d 7B 2 α B ) η Tanh α η4 2 13 4α 4α
B B 12 33 2        Sech α η  Cosh 2 α η η (9 B 6 α B 4 α (d d d ))2 14 3 53 α 4 α 4 α

= + + − + +

− − + − + + +
 

1A5 2 η
=

 
A1 2 29A  (Cosh 2 α η 4 α η )6 22 4 α

= − −   

gg g1 12 2 72 11A η ( g 2  g 6 g ) η Sinh α η  Sinh 2 α η  η  Sinh α η7 5 8 114 2 22 η 6  η 4 η
= + + α − α + + +

α α α  
g1 1 14 2 2 2 23A η (2 g g ) η (4α  g 8α g 24 g α  g 4α  g ) Cosh α η8 1 13 4 9 10 16 1442 12 4 4 α

1 1       (2 α g 2 g α g g )Cosh 2 α η (α g 4 g ) η Sinh α η6 12 13 15 9 103 38 α  α
g1 210        (α g 4 g ) η Cosh α η η  8 113 2  α α

= − − − − − + − −

− − + − − −

− − −
1Cosh α η (2g  g ) η Sinh 2 α η12 1528 α

1       (9g  2g ) Cosh 3 α η14 16272 α

− +

− +

 

20
4 2d α A  2A9 2 

=
 

4 9 10 4
2 4B  α (d d d ) S d α1 = − − −  
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10
3 2B  R d α (S α 1)2 = −        11

3 2B  R α (2 S α 3)3 d= −  
1 1xd A=                                           2 1td A=                                             3 2xd A=  
4 2td A=                                           5 5td A=                                             6 6td A=  
7 9td A=                                           8 1 1xd A A=                                         9 1 2xd A A=  
10 2 1xd A A=                                    11 2 2xd A A=

                                       12 5 1xd A A=  
13 5 2xd A A=                                     14 9 1xd A A=                                       15 9 2xd A A=  
16 2 2td A A=                                     17 2 10d A d=                                        18 2 11d A d=   
19 rd p R=                                         20 rd p E=                                            21 19 20d d d=         

6
2g  p (R d E A  α )r 31 = +

 ,    2 19 5 12 ( E  )g d d d= −  ,             
19

7 14
dg   ( d 2 d  )3 22 α

= −
 

20d 5g   ( 4 A α 2 α B 5 B )4 4 1 224 α
= + −

      

13
p 5 3r g   ( 4 E B 2 E B  α  2 E A α 2 R d  α )5 2 1 432 α

= + − −
   

7
pr g   (E B  α 6 R d )6 3212 α

= −
            

20d  B3g  7 26 α
= −

        

20dg   ( B 2 α B )8 2 124 α
= −

 
20 20 15

1g   ( 2 d  B α 3 d  B 8 R d α)9 1 24 α
= − −

                      
20d B2g   10 4 

=  

 
g10g  11 α 

= −
                                                                       

19 14  
d  dg  12 α 

=  

21 16
4g  d  d α  13 =                                                                 

19 15d  dg   14 α 
=

 
21 17

5g  d  d α15 = −                                                              21 18  5g =  d d α16 −  


