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Abstract 
 

In this paper a new family of efficient iterative methods is presented for 
solving nonlinear equations based on the proportion of two real parameters, 
associated with the given equations. In our proposed methods, we generate a 
single iterative formula and from that single formula it is shown that the 
methods are linear, quadratic, cubic and higher order of convergence 
according to the choice of terms from an expression. The methods are 
supported by various numerical examples and shown that the new proposed 
methods are effective and comparable to the well known other existing 
methods. 
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Introduction 
One of the most basic and fundamental problems in numerical analysis is that of 
finding values of the variable x, which satisfies  
  f(x) = 0  (1) 
 
for a given function f. There are so many existing standard methods are available for 
solving such equation (1). Of course out of them Newton’s method is very popular 
and useful. In past few years so many authors have considered the nonlinear equations 
and gave us a new idea towards the solution and compare their result with the well 
known Newton’s methods [1- 4]. Basto et al [1] and Chen at al [2] were presented an 
iterative formula in which the order of convergence is fixed and in particular, in [1] 
when the other iterative method is considered by taking more terms in the series 
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solution obtained by Adomian modified method [5, 6] or by considering Taylor’s 
expansion of higher order, the order of convergence was not increased. In [2] 
exponential regula-falsi iterative method is presented in which the order of 
convergence is also fixed to second order.  
 At first we assume that the function f is continuous in [a, b] and posses the n-th 
order derivatives in (a, b), where a and b are finite real numbers. In our method, we 
first find out a sufficiently small interval [a0, b0] containing the only root α of 
equation (1) such that f(a0), f(b0) are of opposite in signs in [a, b] and further assume 
that f/(x) has the same sign in [a0, b0], so that f(x) is strictly monotone in that interval 
which contains the only root α.  
 In this paper we give a new approach to the subject based on the ratio of the two 
parameters f(a0) and f(b0) and the main aim of our paper is that, the order of 
convergence is increased with the taking of more terms in the single series obtained 
by the Taylor’s expansion. We observed that the ratio of f(a0) and f(b0) is very 
important and f(a0)/f(b0) or f(b0)/f(a0) is closely associated with the root α and by 
monitoring the values of f(a0)/f(b0) or f(b0)/f(a0), we established a new iterative 
formula (2) to find out the root α. In section (3) we also present a family of iterative 
methods in which the order of convergence is shown more than third and fourth order 
according to a choice of a real parameter.  
 
 
The method 
After finding the sufficient small interval [a0, b0], the expression for the root α of the 
equation f(x) = 0 is given by 

  ,

)(
)(

1
0

0

00
0 D

bf
af
ab

b −
−

−
−=α  if 

)(
)(

0

0

bf
af

 < 1   

  ,

)(
)(1

0

0

00
0 D

af
bf
ab

a −
−

−
+=  if 

)(
)(

0

0

af
bf

 < 1  (2)  

  ,
2

00 D
ba

−
+

=  if 
)(
)(

0

0

bf
af

 = 1  

 

where D  is given by, 
)(
)(

0
/

0

ξf
wf

D = , where 0w  is a point in [a0, b0] given by  

  
)(

)()( 0
00

00
00 af

afbf
ab

aw
−
−

−=   (3) 

 
which is our well-known Regula-falsi formula and },min{ 0wα < 0ξ < },max{ 0wα  (4) 
or, D  satisfies the expression,  
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 Here 0ξ is a point where the tangent to the curve y = f(x) at ( 0ξ , f ( 0ξ )) is parallel 
to the chord joining the points (α, 0) and (w0, f(w0)). Since α is unknown we cannot 
locate exactly the point 0ξ and consequently, we cannot exactly determine the value 
of θ. So, we approximate the value of D  by taking the first few terms of (5). 
 
A Particular method  
If we consider only the first term of the expression (5) then the approximate value of 

D  is given by, D  = 
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 and we find the recurrence relation for the (n+1) th 

approximation of the root α as  
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Convergence Analysis  
In view of (2-4), the true value of α  is given by  
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where },min{ nwα < nξ < },max{ nwα . 
 Let εn+1 is the error after (n+1)-th iteration. 
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where min{ nw , nξ } < nη  < max{ nw , nξ }. Now it is not very difficult to show that nw  

→ α as n → ∞. Now the expression (7) can be written as  
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 For simplicity and without loss of generality and in view of (7) and (9), (6) can be 
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we choose the initial interval [a0, b0] so small that f/(x) has the same sign therein and 
if M1, m1 respectively denote the maximum and minimum of )(/ xf  in [a0, b0], its 
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0 < 
1

11

m
mM −

< 1, therefore θn→ 0 as n→ ∞. This leads to wn→ α as n → ∞. Since nξ

lies between α and wn , therefore it follows that nξ also tends to α as n → ∞. Hence 
from (8) it follows that εn → 0 as n → ∞ i.e. xn → α as n → ∞. Therefore the method 
will converge.  
 
Order of Convergence  
For simplicity and without loss of generality and in view of (7) and (9), (6) can be 
written as  
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are tends to α as n → ∞ and from (12) 2
1

n

n

ε
ε + → 0 as n → ∞. This shows that the order 

of convergence of our new method (6-7) is more than second order. Accordingly our 
method is faster than the Newton’s method. 
 
Another particular method 
If we consider the first two terms of the expression (5) then the approximate value of 
D is given by  
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 Hence the n-th approximation of the root α is given by 
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Convergence Analysis  
Consider the iteration function g as expressed by Eq. (17)  
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 Hence for g///(α) ≠ 0 we get  
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and from (23) it follows that, the order of convergence of the proposed method (24-
25) is more than third order. 
 To reduce the operational count of D we may simplify D by considering  
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form of (24) and (25) is (24) and (27). The order of convergence of (24) and (27) is 
also more than third order [See Theorem 3.1]  
 
 
Further Development 
Consider the family 
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u = then (24) and (33) gives the fourth order iterative formula.  

 For different values of λ we get a families of D and in particular if λ = 1, then we 
get (27) and moreover if λ = ±∞ then we get (6). 
 
 
Numerical Experiments and Comparison 
We now compare our new methods with the Newton’s method and other existing 
well-known methods given in [1- 4] in Table-1. All the examples are taken from the 
references at the end of this paper 
 The test functions f(x) are as follows: 
 f1(x) = x - 2 – e-x, α = 2.1200282389, 
  f2(x) = x3 + x +1, α = - 0.682327803828,  
 f3(x) = ln x,  α = 1.000000000000000, f4(x) = xe-x – 0.1, α = 0.111832559158962, 

 f5(x) = 
x
1 - sinx +1 = 0, α = - 0.62944648407. 

 
 

Table-1 (Comparative Statement). 
 

f(x) Method Initial 
Approx. 
x0 / 
interval / 
[a0,b0] 

Tolerance 
error(ε) 

No. of 
Operation 
per 
iteration  

No. of 
iteration

Obtained Solution 

f1(x) (24) of[1]  2 10-10 11 2 2.120028239 
Newton’s 
Method 

 2 01 3 2.120028239 

New method(6 
&7) 

 [2, 3] 05 2 2.1200282389 

New 
method(24&27) 

 [2, 3]  06 2 2.1200282389 

New 
method(24&33) 

 [2, 3]  07 1 2.1200282389 

f2(x) Algorithm-I 
of[4] 

 -2.9 10-11 06 4 -0.682327803828 

Newton’s 
Method 

 -2.9  01 7 -0.682327803828 

New 
method(6&7) 

 [-3, 0]  05 5 -0.682327803828 

New 
method(24&27) 

 [-2, 0]  06 4 -0.682327803828 

New 
method(24&33) 

 [-3, 0]  07 2 -0.682327803828 
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f3(x) EXRF of[2]  [0.5, 5]  10-15 10* 7 1.0000000000000000
Newton’s 
Method 

 -  01 - Divergent 

New 
method(6&7) 

 [0.5, 5]  05 6 0.9999999999999998

New 
method(24&27) 

 [0.5, 5]  06 4 0.9999999999999999

New 
method(24&33) 

 [0.5, 5]  07 3 1.0000000000000000

f4(x) EXRF of[2]  [0, 1]  10-15 10*  6 0.111833 
Newton’s 
Method 

 0 01 5 0.111832559158962 

New 
method(6&7) 

 [0,1]  05 5 0.111832559158962 

New 
method(24&27) 

 [0,1]  06 3 0.111832559158962 

New 
method(24&33) 

 [0,1]  07 3 0.111832559158962 

f5(x) (15) & (16) of 
[3] 

 -1.3 10-10 07 6 -0.629446 

Newton’s 
Method 

 -1.3 01  25 -0.62944648407 

New 
method(6&7) 

 [-1.3, -
0.5]  

05 4 -0.62944648406 

New 
method(24&27) 

 [-1.3, -
0.5]  

06 3 -0.62944648407 

New 
method(24&33) 

 [-1.3, -
0.5]  

07 2 -0.62944648407 

*Up to the third order expansion of the exponential series  
 
 
 All computations are done by the ‘C’ programming language. Here we take the 
approximate solution, depending upon the precision (ε) of the computer. For the 
computer program the stopping criteria nn xx −+1  < ε is used, and when the stopping 
criteria is satisfied α is taken as the approximate value of the root. For all the 
numerical examples given in Table 1 the fixed stopping criteria (ε), as shown in the 
Table-1, is used. 
 
 
Conclusion  
In this work, we give a single general iterative formula (2) in which linear 
convergence is assured, if we remove the term D from the expression (2) and further 
if we take only the first term of (5) then the algorithm gives the order of convergence 
greater than 2 and consequently better than the Newton’s method. Further, if we take 
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first two terms of (5) then we get an iterative formula in which the order of 
convergence is greater than 3 and 4 according to the choice of a real parameter. The 
performance of our methods has been compared with the others well known methods 
and it gives equal or better result than the other existing methods an in particular for 
the function f1(x), our new method (24&33) has able to find out the root, correct to 10 
decimal places only in a single iteration, whereas the other methods fails to do that. 
Of course we can give another iterative formula by considering more than first two 
terms of (5) and it is an open question whether this another new iterative formula can 
give an order of convergence greater than 4 or 5 or more. 
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