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Abstract 
 

A Subset S of V is called a dominating set in G if every vertex in V-S is 
adjacent to at least one vertex in S. A Dominating set is said to be two 
dominating set if every vertex in V-S is adjacent to at least two vertices in S. 
The minimum cardinality taken over all, the minimal two dominating set is 
called two domination number and is denoted by γ2(G). The minimum number 
of colors required to colour all the vertices such that adjacent vertices do not 
receive the same colour is the chromatic number χ(G). In this paper, we 
characterize the classes of graphs whose sum of two domination number and 
chromatic number is equals to 2n-5 and 2n – 6. 
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Introduction  
Let G= (V, E) be a simple undirected graph. The degree of any vertex u in G is the 
number of edges incident with u and is denoted by d(u). The minimum and maximum 
degree of a vertex is denoted by δ(G) and Δ(G) respectively; Pn denotes the path on n 
vertices. The vertex connectivity κ(G) of a graph G is the minimum number of 
vertices whose removal results in a disconnected graph. A colouring of a graph is an 
assignment of colours to its vertices so that two adjacent vertices have the same color. 
An n-colouring of a graph G uses n colours. The Chromatic Number χ is defined to be 
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the minimum n for which G has an n-colouring. If χ(G) = k but χ(G) <k, for every 
proper subgraph H of G, then G is k-critical. 
 A subset S of V is called a dominating set in G if every vertex in V-S is adjacent 
to atleast one vertex in S. The minimum cardinality taken over all dominating sets in 
G is called the domination number of G and is denoted by γ. A dominating set is said 
to be two dominating set if every vertex in V-S is adjacent to atleast two vertices in S. 
The minimum cardinality taken over all the minimal two dominating set is called two 
domination number and is denoted by γ2(G). 
 Several authors have studied the problem of obtaining an upper bound for the sum 
of a domination parameter and a graph theoretic parameter and characterized the 
corresponding extremal graphs. In [10], Paulraj Joseph J and Arumugam S proved 
that γ+k ≤p. In [11], Paulraj Joseph J and Arumugam S proved that γc+χ=p+1. They 
also characterized the class of grahs for which the upper bound is attained. They also 
proved similar results for γ and γt. In [7], Paulraj Joseph J and Mahadevan G, proved 
that γcc +χ≤ 2n-1 and characterized the corresponding extremal graphs. In [12], 
Paulraj Joseph J and Mahadevan G proved that γpr+χ≤ 2n-1 and characterized the 
corresponding extremal graphs. In [8], Paulraj Joseph J and Mahadevan G introduced 
the concept of complementary perfect domination number γcp and proved that 
γcp+χ≤2n-2, and characterized the corresponding extremal graphs. They also obtained 
the similar results for the induced complementary perfect domination number and 
chromatic number of a graph. In this paper, we obtain sharp upper bound for the sum 
of the two domination number and chromatic number and characterize the 
corresponding extremal graphs. Terms not defined here, are used in the sense of 
Hanary[1]. 
 
Notations: Kn (Pm) denotes the graph obtained from Kn by attaching the end vertex of 
Pm to any one of the vertices of Kn. Kn (m1,m2,m3,…..mk ) denotes the graph obtained 
from Kn by attaching m1 edges to the vertex ui of Kn, m2 edges to the vertex uj for i≠j 
of Kn ………., mk edges to all the distinct vertices of Kn.  
 
 
Previous Results 
Theorem 1.1: For any connected graph G, γ2 (G)≤ n 
 
Theorem 1.2: For any connected graph G, χ(G) ≤Δ(G) +1 
 
Theorem 1.3: For any connected graph G, γ2(G) + χ(G) ≤ 2n and the equality holds if 
and if only G≅ K2. 
 
 
Main Results 
Theorem 2.1: For any connected graph G, γ2(G)+χ(G)=2n-5 if and only if 
G≅K3(4,0,0), K3(3,1,0), K3(2,2,0), S(K1,5), K4(1,1,1,0), K4(3,0,0,0), K4(2,1,0,0), 
K3(P4), K3(P3,P2,0), K4(P3), K5(2,0,0,0,0), K5(2,2,0,0,0), K6(P2) , K7 or one of the 
following graphs in the figure 2.1. 
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Figure 2.1 
 
 

Proof: If G is anyone of the graph given in the figure, then clearly γ2(G) + χ (G)=2n-
5. Conversely assume that γ2(G) +χ (G)=2n-5. This is possible only ifγ2=n,χ =n-5(or) 
γ2 =n-1, χ = n-4(or)γ 2 =n-2, χ = n-3(or) γ2 =n-3, χ =n-2(or)γ2 =n-4, χ =n-1(or) γ2 =n-5, 
χ =n. 
 
Case (i) Let γ2=n andχ=n-5, since χ=n-5, G contains a clique K on n-5 vertices. Let 
S={x1,x2,x3,x4,x5}∈V-S. Then <S> =K5,⎯K5,P5,K4∪K1,P3∪K2,K1,4,P2∪K3 K2,3, 
K3∪K2. In all the above cases, it can be verified that no new graph exists. 
 
Case (ii) Let γ2=n-1and χ=n-4 since χ=n-4, G contains a clique K on n-4 vertices. Let 
S={x1,x2,x3,x4}. Then< S> =K4,⎯K4,P4,K3∪K1,K1,3,K2∪K2,P3∪K1. 
 If <S>=K4, then no graph exists. 
 
 Subcase(a) Let <S>=⎯K4, since G is connected. One of the vertices of Kn-4 say ui 
is adjacent to all the vertices of S (or) three vertices of S are adjacent to the vertex ui 
and the fourth one is adjacent to uj for i≠j(or)two vertices of S are adjacent to the 
vertex ui and the remaining vertices of S are adjacent to uj (or) two vertices of S are 
adjacent to the vertex ui and in the remaining vertices one is adjacent to uj and another 
one is adjacent to uk for i≠j≠k(or)all the vertices of S are adjacent to the distinct 
vertices of Kn-4. Then in all the cases,{x1,x2,x3,x4,ui,uj}for i≠j is a γ 2 set. So that γ2 = 6, 
since γ2 = n-1. So that n=7. Since χ = n-4= 3. Hence K = K3. Let u1,u2,u3 be the 
vertices of K3. If all the vertices of S are adjacent to u1 then γ2=6 and d(x1) =d(x2) = 
d(x3) = d(x4) =1. Hence G ≅ G1. If three vertices of S are adjacent to u1 and the fourth 
one is adjacent to u2 then γ2 =6 and d(x1) =d(x2) =d(x3) =d(x4) =1. Hence G ≅ K3 (3, 1, 
0). If two vertices of S are adjacent to u1 and the remaining two vertices are adjacent 
to u2, then γ2 = 6 and d(x1) =d(x2) =d(x3) =d(x4) =1. Hence G ≅ K3 (2, 2, 0). 
 Subcase(b) Let <S>=P4=(x1,x2,x3,x4), since G is connected. There exists a vertex 
say ui in Kn-4 is adjacent to x1(or equivalently x4) (or) x2(or equivalently x3). Let ui be 
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adjacent to x1. Then {x2,x4,ui,uj} for i≠j is a γ2 set. So that γ2 =4, since γ2=n-1 implies 
that n=5. Since χ= n-4 =1 which is a contradiction. Since G is totally disconnected. 
Hence no graph exists. Let ui be adjacent to x2. Then {x1,x2,x4,ui,uj} for i≠j is a γ 2 set. 
So that γ2 = 5, since γ2 = n-1 implies that n = 6, since χ = n-4 = 2. Hence K = K2 = uv. 
If u is adjacent to x1 then γ2 = 4 which is a contradiction. Hence no graph exists. 
 
 Subcase(c) Let <S>=K1, 3. Let the vertex x1 be adjacent to x2,x3,x4. Since G is 
connected, there exists a vertex ui inKn-4 which is adjacent to x1 or any one of 
{x2,x3,x4}. let ui be adjacent to x1, then {x2,x3,x4,ui,uj} for i≠j is a γ2 set so that γ2 = 5, 
since γ2 = n-1 implies that n=6. Since χ = n-4 =2. Hence K=K2=uv. If u is adjacent to 
x1, then γ2 =5 and d(x1) =d(x2) =d(x3) =d(x4) =1. Hence G ≅ S (K1,5). If u is adjacent to 
x4 then γ2 =4, which is a contradiction. Hence no graph exists. 
 For all the remaining cases, no new graph exists. 
 
Case (iii) Let γ2= n -2and χ = n-3, since χ =n-3, G contains a clique K on (n-3) 
vertices. Let S ={x,y,z}∈ V-S. <S>=K3,⎯K3,P3,K2∪K1,P2∪K1. 
 
 Subcase(a) Let <S> =K3, since G is connected, x is adjacent to some ui in Kn-3. 
Then {x,y,ui,uj} for i≠j is a γ2 set, so that γ2 =4. Now γ2 = n-2, since n=6. Since χ=n-
3=3. Hence K = K3. Let u1,u2,u3 be the vertices K3. Without loss of generality, u1 is 
adjacent to x, then γ2 = 4. If d(x) =d(y) = d(z) =2. Then G≅ G1. 
 
 Subcase(b) Let <S>=⎯K3, since G is connected, one of the vertices of Kn-3 say ui is 
adjacent to all the vertices of S (or) two vertices of S (or) one vertex of S. If ui for 
some i is adjacent to all the vertices of S then {x,y,z,ui,uj} for i≠j is a γ2 set. Now γ2 
=5, since γ2 =n-2, so that n=7 since χ =n-3=4. Hence K=K4. Let u1,u2,u3,u4 be the 
vertices of K4. Without loss of generality, u1 is adjacent to all the vertices of S and 
d(x) =d(y) = d(z) =1. Since γ 2 =5, then G ≅ K4 (3, 0, 0, 0). If u1 is adjacent to x and y 
and u2 is adjacent to z, since γ2 =5, then G ≅ K4 (2, 1, 0, 0). If u1 is adjacent to x and u2 
is adjacent is to y and u3 is adjacent to z since γ2=5, d(x) =d(y) =d(z) =1. Then 
G≅K4(1,1,1,0). 
 Subcase(c) Let <S>=P3 =(x,y,z). Since G is connected (or equivalently z) is 
adjacent to ui for some i in Kn-3. Then {x,z,ui,uj}for i≠j is a γ2 set or if y is adjacent to 
ui in Kn-3 then the same γ2 set arise. So that n=6. Hence K=K3. Let u1,u2,u3 be the 
vertices of K3. If u1 is adjacent to x, then γ2=4. Hence G≅K3 (P3). If u1 is adjacent to y, 
then γ2=4. Hence G≅G2. 
 Subcase(d) Let<S>=K2∪K1. Let xy be the edge in K2∪K1, since G is connected. 
There exists a ui in Kn-3 is adjacent to x. If z is adjacent to same ui or z is adjacent to uj 
for i≠j in Kn-3. Then {y,z,ui,uj} for i≠j is a γ2 set. So that n=6. Hence K = K3. Let 
u1,u2,u3 be the vertices of K3. Let u1 be adjacent to x and z then γ2 = 4. Hence G ≅ G3. 
Let u1 be adjacent to x and u2 be adjacent to z then γ2 = 4. Hence G≅K3 (2, 1, 0). 
Case (iv) Let γ2 = n-3and χ = n-2, since χ = n-2, G contains a clique K on n-2 vertices. 
Let S={x,y}∈V-S. <S>=K2 or ⎯K2. 
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 Subcase(a) Let <S>=K2, since G is connected. There exists a vertex ui in Kn-2 is 
adjacent to x. Then {y,ui,uj} is a γ2 set. So that n=6. Hence K=K4. Let u1,u2,u3,u4 be 
the vertices of K4. Let u1 be adjacent to x, if d(x) =2 and d(y) =1, then G ≅ K4 (P3).  
 Subcase(b) Let <S> =⎯K2, since G is connected. There exists a vertex ui in Kn-2 is 
adjacent to x and y (or) x is adjacent to ui and y is adjacent to uj. In both the 
cases,{x,y,ui,uj} is a γ2 set . So that n=7, hence K=K5. Let u1,u2,u3,u4,u5 be the vertices 
of K5. Let x and y be adjacent to u1 then γ2 =4. If d(x)=d(y)=1, then G≅K5(2,0,0,0,0). 
Let u1 be adjacent to x and u2 be adjacent to y, then γ2=4. If d(x)=d(y)=1, then 
G≅K5(1,1,0,0,0). 
 
Case (v) Let γ2 = n-4and χ = n-1, since χ = n-1, G contains a clique K on n-1 vertices 
or does not contain a clique on n-1 vertices. There exists a vertex ui in Kn-1 is adjacent 
to x. Then{ x,ui,uj} for i≠j is a γ2 set. So that n = 7. Hence K=K6. Let u1,u2,u3,u4,u5 ,u6 
be the vertices of K6. Let u1 is adjacent to x, so that γ2 =3. If d(x)=1, then G ≅ K6(P2).  
 
Case (vi) Let γ2 = n-5 and χ = n, since χ=n. Then G= Kn , but for Kn, γ2 =2 implies that 
n=7. Hence G ≅ K7. 
 
Theorem 2.2: For any connected G, γ2(G) + χ(G) = 2n-6 if and if only G≅K3(5,0,0), 
S(K1,6), K4(4,0,0,0), K4(3,1,0,0), K4(2,2,0,0), P6, K3(1,3,0), K5(3,0,0,0,0), 
K5(2,1,0,0,0), K5(1,1,1,0,0), K4(P4), K5(P3), K6(2,0,0,0,0,0), K6(1,1,0,0,0,0), 
K7(1,0,0,0,0,0,0), K8 or any one of the following graphs in the figure2.2. 
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Figure 2.2 
 
 
Proof: If G is anyone of the graph given in the figure, then clearly γ2 (G) + χ(G) = 2n-
6, conversely assume that γ2(G) + χ(G) = 2n-6. This is possible only if γ2(G) = n, χ 
(G) = n-6(or)γ2 (G) = n-1, χ(G) = n-5(or)γ2 (G) = n-2, χ (G)= n-4 (or) γ2(G) = n-3, χ(G) 
= n-3(or)γ2 (G) = n-4, χ (G) = n-2(or)γ2(G) = n-5, χ (G) = n-1(or) γ2 (G) = n-6, χ (G) = 
n. 
 
Case (i) Let γ2 (G)=n, χ (G)= n-6, since χ=n-6, G contains a clique K on n-6 vertices. 
Let S = {x1,x2,x3,x4,x5,x6}∈V-S. Then <S> = K6,⎯K6,P6, 
K3∪K3,K2∪K4,P3∪K3,P2∪K4,K1,5,K3,3,K2,4  
 If <S> = K6, then no graph exists. 
 
 Subcase(a) Let <S> =⎯K6. Since G is connected, one of the vertices of Kn-6 say ui 
is adjacent to all the vertices of S(or)five vertices of S(or)four vertices of S (or)three 
vertices of S(or)two vertices of S (or)one vertex of S. In all the cases, 
{x1,x2,x3,x4,x5,x6,ui,uj } for i ≠ j forms a γ2 set. So that γ2 =8. Hence n = 8. So that K= 
K2 = uv. In all the cases, no new graph exists. 
 For all the remaining cases, no new graph exists. 
 
Case (ii) Let γ2 (G) =n-1, χ(G) =n-5. Since χ= n–5, G contains a clique K on n – 5 
vertices or does not contain a clique K on n-5 vertices. Let S={ x1 , x2 , x3 , x4 , x5 }∈ V-
S . Then< S > = K5 ,⎯K5 , P5 , P3 ∪ K2 ,K3 ∪ K2, K4 ∪ K1 ,P4 ∪ K1 , K1 ,4 , K2 , 3 . 
 If<S> = K5, then no graph exists. 
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 Subcase(a) Let<S> =⎯K5. Since G is connected. There exists a vertex ui in Kn-5 is 
a adjacent to all the vertices of S (or) four vertices of S (or) three vertices of S (or) 
two vertices on S (or) one vertex of S. Then in all the cases, { x1,x2,x3,x4,x5,ui,uj } for i 
≠ j is a γ2 set. So that γ2 = 7. Hence n = 8. So that K = K3. Let u1,u2,u3, be the vertices 
of K3. If u1 is adjacent to all the vertices of S and if d(x1)=d(x2)=d(x3)=d(x4)=d(x5)=1, 
then G≅K3(5,0,0). In all other cases, no new graph exists. 
 Subcase(b) Let<S> = P4∪K1. Since G is connected. Let P4 = (x1, x2, x3, x4) and x5 
be the vertex of K1. There exists a ui in Kn-5 is adjacent to x1 and x5 (or) If ui is 
adjacent to x1 and uj for i ≠ j is adjacent to x5. Then in both the cases {x2, x4, x5, ui, uj} 
is a γ2 set. So that n =6, since χ= n–5=1, for which G is totally disconnected. Hence 
no graph exists. If ui is a adjacent to x2 (or equivalently x3) and x5. Then {x1, x3, x4, 
x5, ui, uj} is a γ2 set. So that n = 7. Hence K = K2 = uv. If u is adjacent to x2 and x5, 
then G ≅ G1. In all other cases, no new graph exists. 
 Subcase(c) Let <S>=K1, 4. Since G is connected. Let the vertex x1 be adjacent to 
x2,x3,x4,x5. There exists a vertex ui in Kn-5 which is adjacent to x1 or any one of 
{x2,x3,x4,x5}. Then {x2,x3,x4,x5,ui,uj} for i≠j is a γ2 set. So that n=7. Hence K=K2 =uv. 
If u is adjacent to x1, then γ2= 6. Hence G ≅ S (K1, 6) and if u is adjacent to x5 then 
n=6, so that γ2 = 5, which is a contradiction. Hence no graph exists. 
 For all the remaining cases, no new graph exists. 
 
Case (iii) Let γ2 (G) =n-2, χ (G)= n-4, since χ = n-4, G contains a clique K on (n-4) 
vertices or does not contain a clique K on n-4 vertices. Let S ={x1,x2,x3,x4} ∈ V-S. 
Then <S>=K4,⎯K4,P4, K3 ∪ K1, K1,3, K2 ∪ K2 , P3 ∪ K1 
 If <S> = K4, then no graph exists. 
 
 Subcase(a) Let <S>= ⎯K4 . Since G is connected, one of the vertices of Kn-4 says ui 
is adjacent to all the vertices of S (or) three vertices of S (or) two vertices of S (or) 
one vertex of S. Then in all the cases, {x1,x2,x3,x4,ui,uj}for i≠j is a γ2 set. So that γ2 =6. 
Hence n = 8. So that K=K4. Let u1,u2,u3,u4 be the vertices of K4. If all the vertices of S 
are adjacent to u1, then γ2 =6 and d(x1) =d(x2) =d(x3) =d(x4) =1. Hence G ≅ K4 (4, 0, 0, 
0). If three vertices of S are adjacent to u1 and the fourth one is adjacent to u2 and 
d(x1) =d(x2) =d(x3) =d(x4) =1, then γ2 = 6. Hence G ≅ K4 (3, 1, 0, 0). If two vertices of 
S are adjacent to u1 and the remaining two vertices are adjacent to u2 and d(x1) =d(x2) 
=d(x3) =d(x4) =1, then γ2 =6. Hence G ≅ K4 (2, 2, 0, 0). 
 Subcase(b) Let <S>=P4=(x1,x2,x3,x4 ). Since G is connected, there exists a vertex 
say ui in K n-4 is adjacent to x1 (or equivalently x4) (or) x2 (or equivalently x3). Let ui 
be adjacent to x1, then {x2,x4,ui,uj } for i≠j is a γ2 set. So that n= 6. Hence K = K2 = uv. 
If x1 is adjacent to u, then γ2 =4. Hence G ≅ P6. Let ui be adjacent to x2, then 
{x1,x3,x4,ui,uj } for i≠j is a γ2 set. So that n= 7. Hence K=K3. Let u1,u2,u3 be the 
vertices of K3. If x1 of S is adjacent to u1, then γ2 =4, which is a contradiction. Hence 
no graph exists. If x2 is adjacent to u1 then γ2 = 5. Hence G ≅ G2. 
 Subcase( c) Let <S>= K1,3. Let the vertex x1 be adjacent to x2,x3,x4. Since G is 
connected, there exists a vertex ui in Kn-4 which is adjacent to x1 or any one of 
(x2,x3,x4) . Then in both the cases, {x2,x3,x4,ui,uj } for i≠j is a γ2 set . So that n = 7. 
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Hence K=K3. Let u1,u2,u3 be the vertices of K3. If u1 is adjacent to x1 then γ2 =5. 
Hence G ≅ G3. If u1 is adjacent to x4 then γ2 = 5. Hence G ≅ G4. 
 Subcase(d) Let <S> = P3 ∪ K1. Let P3 = (x2,x3,x4 ), since G is connected. There 
exists a vertex say ui in Kn-4 which is adjacent to x1. Again since G is connected, we 
consider the following two situations: (i) The vertex ui is adjacent to x2 (or 
equivalently x4) or x3. (ii)There exists a vertex uj for i≠j in Kn-4 such that uj is adjacent 
to x2(or equivalently x4)or x3. Then in all the cases, {x1,x2,x4,ui,uj } for i≠j is a γ2 set. 
So that n= 7. Hence K=K3. Let u1,u2,u3 be the vertices of K3. Let u1 be adjacent to x1 
and x2 (or equivalently x3) and let u1 be adjacent to x1 and u2 be adjacent to x2 (or 
equivalently x3). Then in all the cases, γ2 =5. Hence G ≅ G5,G6,G7 ,K3(1,3,0) . 
 Subcase(e) Let<S> = K2∪K2. Let x1x2 and x3x4 be the edges in <S>. Since G is 
connected, there exists a vertex ui in Kn-4 which is adjacent to x1 and x3 in S (or) ui is 
adjacent to x1 and uj is adjacent to x3 for i≠j in Kn-4 . Then in both the cases, 
{x2,x4,ui,uj } for i≠j is a γ2 set, hence γ2 =4, so that n=6. Hence K = K2 = uv. If u is 
adjacent to x1 and x3 then γ2 =4. Hence G ≅ G8. If u is adjacent to x1 and v is adjacent 
to x3, then γ2 =4. Hence G ≅ P6. 
 Subcase(f) Let <S> = K3 ∪ K1. Since G is connected, there exists a vertex ui in Kn-

4 is adjacent to x1 and x4 (or) ui is adjacent to x1 and uj for i≠j is adjacent to x4. Then in 
both the cases, {x2,x3,x4,ui,uj } for i≠j is a γ2 set of G. So that γ2 = 5. Hence n= 7. 
Since χ = n-4 =3. Hence K=K3. Let u1,u2,u3 be the vertices of K3. If u1 is adjacent to 
x1 and x4, then γ2 = 5. Hence G ≅ G9. If u1 is adjacent to x1 and u2 is adjacent to x4 
then γ2 =4, which is a contradiction. Hence no graph exists. 
 
Case (iv) Let γ2 = n-3 & χ = n-3, Since G is connected. Since χ = n-3, G contains a 
clique K on (n-3) vertices or does not contain a clique K on n-3 vertices. Let S 
={x1,x2,x3} ∈ V-S. Then <S> =K3,⎯K3,P3 , K2 ∪ K1 ,P2 ∪ K1. 
 Subcase(a) Let <S> = K3. Since G is connected, let x1 be adjacent to ui for some i 
in Kn-3. Then {x2,x3,ui,uj} for i≠j is a γ2 set . So that γ2= 4implies that n=7. Hence K = 
K4. Let u1,u2,u3,u4 be the vertices of K4 . If u1 is adjacent to x1 then γ2 =4. Hence G ≅ 
G10. 
 Subcase(b) Let <S>= ⎯K3. Since G is connected, one of the vertices of Kn-3 says ui 
is adjacent to all the vertices of S (or) two vertices of S (or) one vertex of S. Then in 
all the cases, {x1,x2,x3,ui,uj }for i≠j is a γ2 set. So that n=8. Hence K=K5. Let 
u1,u2,u3,u4,u5 be the vertices of K5, without loss of generality, u1 is adjacent to all the 
vertices of S and d(x1)=d(x2)=d(x3)=1, then γ2 =5. Hence G ≅ K5 (3, 0, 0, 0, 0). If u1 is 
adjacent to x1, x2 and u2 is adjacent to x3 and d(x1) = d(x2) = d(x3) = 1, then γ2 =5. 
Hence G ≅ K5 (2, 1, 0, 0, 0). If u1 is adjacent to x1 and u2 is adjacent to x2 and u3 is 
adjacent to x3, then γ2 = 5. Hence G ≅ K5 (1, 1, 1, 0, 0). 
 Subcase(c) Let <S> = P3 =(x1,x2,x3). Since G is connected. There exists an vertex 
ui in Kn-3 is adjacent to x1 (or equivalently x3 ) (or) ui is adjacent to x2 . Then in both 
the cases, {x1 ,x3,ui,uj } for i≠j is a γ2 set. So that n = 7. Hence K = K4. Let u1,u2,u3,u4 
be the vertices of K4. If u1 is adjacent to x1 then γ2 =4. Hence G ≅ K4 (P4). If u1 is 
adjacent to x2 then γ2 = 4. Hence G ≅ G11. 
 Subcase(d) Let <S>= K2 ∪ K1 . Let x1x2 be the edge in K2. Since G is connected. 
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There exists an ui in Kn-3 is adjacent to x1 and x3 (or) ui is adjacent to x1 and uj for i≠j 
is adjacent to x3. Then in both the cases, {x2,x3,ui,uj } for i≠j is a γ2 set. So that γ2 =4, 
implies that n =7. Hence K=K4. Let u1,u2,u3,u4 be the vertices of K4. If u1 is adjacent 
to x1 and x3, then γ2 =4 and d(x1) =2 and d(x2) =d(x3) =1. Hence G ≅ G12. If u1 is 
adjacent to x1 and u2 is adjacent to x3, then γ2 = 4. Hence G ≅ G13. 
 
Case (v): Let γ2 = n-4 and χ = n-2, since χ = n-2 , G contains a clique K on (n-2) 
vertices or does not contain a clique K on n-2 vertices. Let S ={x1,x2 } ∈ V-S. Then 
<S> =K2 or ⎯K2. 
 Subcase(a) Let<S>=K2. Since G is connected, there exists a vertex ui in Kn-2 is 
adjacent to x1. Then {x2,ui,uj } for i≠j is a γ2 set . So that n=7. Hence K = K5. Let 
u1,u2,u3,u4,u5 be the vertices of K5. If u1 is adjacent to x1, then γ2 = 3 and d(x1) =2, 
d(x2) =1. Hence G ≅ K5 (P3). 
 Subcase(b) Let <S>=⎯K2. Since G is connected, there exists a vertex ui in Kn-2 is 
adjacent to x1 and x2 (or) If ui is adjacent to x1 and uj for i≠j is adjacent to x2. Then in 
both the cases, {x1,x2,ui,uj } for i≠j is a γ2 set. So that n=8. Hence K = K6. Let 
u1,u2,u3,u4,u5,u6 be the vertices of K6. If x1 and x2 be adjacent to u1, then γ2 = 4 and 
d(x1) = d(x2) =1. Hence G ≅ K6 (2, 0, 0, 0, 0, 0). If x1 is adjacent to u1 and x2 is 
adjacent to u2, then γ2=4 and d(x1) =d(x2) =1. Hence G ≅ K6(1,1,0,0,0,0) . 
 
Case (vi) Let γ2 = n-5 and χ = n-1, since χ = n-1, G contains a clique K on (n-1) 
vertices or does not contain a clique K on n-1 vertices. There exists a vertex ui in Kn-1 
is adjacent to x. Then {x,ui,uj } for i≠j is a γ2 set . So that n= 8. Hence K = K7. Let 
u1,u2,u3,u4,u5,u6,u7 be the vertices of K7. If u1 is adjacent to x then γ2 =3. Hence G ≅ 
K7(1,0,0,0,0,0,0). 
 
Case (vii) Let γ2 = n-6 and χ = n, since χ = n then G = Kn, G must be complete. But 
for Kn, γ2 =2. So that n=8. Hence G ≅ K8. 
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