
International Journal of Computational Science and Mathematics.
ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 93-98
© International Research Publication House
http://www.irphouse.com

Solving the Job-Shop Scheduling Problem by using
Genetic Algorithm

Smita Verma, Megha Jain and Dinesh Choudhary

Department of Applied Mathematics & Computational Science,
S.G.S. Institute of Technology & Science, 23-Park Road,

Indore – 452003 (M.P.), India
E-mail: yvsmita@rediffmail.com, megha_267@rediffmail.com

Abstract

The job-Shop Scheduling is concerned with arranging processes and
resources. Scheduling tools allow production to run efficiently. The goal in
this paper is the development of an algorithm for the job-shop scheduling
problem, which is based on genetic algorithms. Our intention is to prove, that
even a relatively simple genetic algorithm is capable for job-shop scheduling.

Keywords: Job-Shop Scheduling Methodology, Genetic Algorithms,
Evolutionary Computation

Introduction
Scheduling is an act of defining priority of arranging activities to meet certain
requirements, constraints, or objectives. A schedule is a timetable for both jobs and
machines. Time is a major constraint and we must utilize it in an optimum manner.
Scheduling the production resources leads to increased efficiency, utilization and
profitability for the enterprise. Job-shop is one of the most popular generalized
production systems.
 GA applications for JSSP have special chromosome representation as well as
genetic operators to be applied to feasible schedules. In our case, the chromosomes
are coded as a list of sets of numerical values for each particular schedule. A
generalization of the GA is the Genetic Programming (GP) algorithm where each
individual in a generation represents, with its chromosome, a feasible model solution.
In this paper we need, a sequence of genetic operators that will define one genetic
algorithm. There are two kinds of information defined for the GP algorithm; they are
terminals (variable values and random numbers) and functions (mathematical
functions used in the generated model).

94 Smita Verma, Megha Jain and Dinesh Choudhary

Methodology
A large amount of work in JSSP has been reported over the past three decades using
several approaches like optimal methods, dispatching rules, constraint-based
intelligent systems, Lagrangian relaxation, neural networks, tailored heuristics, tree
search techniques, inductive learning models, local search procedures and genetic
algorithms.
 In this paper, we have opted genetic algorithm approach by taking a 5job – 5
machine problem. We have solved it by traditional as well as by GA approach. The
problem is given below. On traditionally solving this problem, we have obtained the
results shown in Annexure I.

Table1: Operation Sequence.

 Sequence1 Sequence2 Sequence3 Sequence4 Sequence5
Job1 Machine3 Machine1 Machine2 Machine4 Machine5
Job2 Machine2 Machine3 Machine5 Machine1 Machine4
Job3 Machine1 Machine5 Machine4 Machine3 Machine2
Job4 Machine4 Machine3 Machine2 Mahine1 Machine5
Job5 Machine5 Machine3 Machine1 Machine2 Machine4

Genetic Algorithms in JSSP
We have generated schedules in a particular way in which the chromosome will be
feasible after performing genetic operators. The decision management in JSSP
distributes the jobs for each machine, selecting sometimes one task among the other
alternatives so as to have a better fitness. Chromosome is coded with M*J (where M
stands for machine & J for Jobs) values between 0 and 1, one for each decision.
This approach allows using the same traditional GA operators to solve the problem
because the chromosome contains a sequence of numbers, all representing feasible
schedules.

Crossover
Yamada and Nakano (1997) in most of their papers have introduced plenty of
techniques that could be use in solving the job-shop problem. One of them is by
making use of CB neighbourhood and DG distance. The idea of this technique is to
evaluate a point x by the distance d x, p2 . Lets denote parent1 and parent2 as p1 and
p2 . First, set x p1 . Then, we generated the CB neighbourhood for x , N x. For each
member, yi , in N x we calculated the distance between the members and p2 to produce
Dyi , p2  . Then, we sort Dyi , p2  in ascending order. Starting from the first index in
Dsort yi , p2 , we accepted yi with probability one if the fitness value is less than the
current fitness valueV yi ≤ V x. Otherwise, we accepted it with probability 0.5. Starting
from p1 , we modified x step by step approaching p2 . After some iteration, we will
find that x will gradually loses p1 ’s characteristics and started to inherit p2 ’s

Solving the Job-Shop Scheduling Problem by using Genetic Algorithm 95

characteristics although in a different ratios. We choose the child depending on the
less DG distance between the child and both its parents.

Algorithm 1: Crossover

1. Let p1 and p2 be the parent solution.
2. Set x = p = q 1 .
3. Find CB Neighbourhood for x , N(x).
4. Do

a. For each member yi N(x), calculate the distance between yi and p2 , ()
D yi , p2 .

b. Sort the distance value in ascending order, () Dsort yi , p2 .
c. Starting from i =1, do

i. Calculate the fitness value for yi , () V yi .
ii. If V(yi) ≤ V(x) accept yi with probability one, and with

probability 0.5
 otherwise.

iii. If yi is not accepted, increase i by one.
 Repeat i-iii until yi is accepted.

d. Set x = yi
e. If V(x)≤V(q) then set q = x .

 Repeat 3-4 until number of iterations.

5. q is the child.

Mutation
Instead of using some random probability, we apply mutation if the DG distance
between parent1 and parent2 are less than some predefined value. It is also defined
based on the same idea as crossover. However, we choose the child which has the
largest distance from the neighbourhood.

Algorithm 2: Mutation

1. Set x = p1.
2. Find Neighbourhood for x , N(x)
3. Do

a. For each member yi N(x), calculate the distance between yi and p1 , ()
D yi , p1 .

b. Sort the distance value in descending order, () Dsort yi , p1 .
c. Starting from i = 1, do

i. Calculate the fitness value for yi , () V yi .
ii. If V(yi) ≤ V(x) accept yi with probability one, and with

probability 0.5
 otherwise.

iii. If yi is not accepted, increase i by one.

96 Smita Verma, Megha Jain and Dinesh Choudhary

Repeat i-iii until yi is accepted.
d. Set x = yi .
e. If V(x)≤V(q) then set q = x .

Repeat 2-3 until number of iteration.
4. q is the child.

Acceptance Criterion
The final and the most important step in the GA procedure is to choose the individual
to be replaced by child. It is widely known that we always choose the fittest individual
to reproduce in the next iteration. In Yamada and Nakano (1997), they did not
consider or choose the child with the same fitness value with other population
members. However, by not even considering that child, we may lose the good
individual without considering its abilities to be evaluated. So, in this paper, after
considering the worst individual in the population, we also consider if the child has
the same fitness value with the member of population. Instead of dropping that child,
we replaced the old one with the child assuming that we have given chance for the old
individual to reproduce. Noted that we could not take both of the individuals to avoid
having problem later, we might have problem falling in the local optima. The
algorithm for the whole procedure is shown

1. Initialize population: Randomly generated a set of 10 schedules including the
schedules obtained by some priority rules.

2. Randomly select two schedules, named them as p1 and p2 . Calculate DG
distance between p1 and p2 .

3. If DG distance is smaller from some predefined value, apply Algorithm 2 to p1
. Generate child. Then go to step 5.

4. If DG distance is large, we apply Algorithm 1 to p1 and p2 . Generate child.
5. Apply neighbourhood search to child to find the fittest child in the

neighbourhood. Noted it as child’.
6. If the makespan for the child’ is less than the worst and not equal to any

member of population, replace the worst individual with child’. If there is a
member having the same makespan value, replace the member with the child’.

7. Repeat 2-6 until some termination condition are satisfied.

Results and Discussions
Consider a 5 jobs and 5 machines problem with the operation sequence and the
processing time for each operation have been determined in Table1. We run the
program for five times using the population size = 10, number of iterations for
mutation is 100 and crossover is 200. The algorithm was terminated after 200
generations. From the result, it can be shown that the combination of critical block,
DG distance and genetic algorithm could provide a result as good as other methods.
From Table, we could see that the last job processed is job 5 on machine 4. So, our
makespan value for this problem is 34. The result also gives us the job sequence for
each machine to process, the starting time and the finish time for each operation. For

Solving the Job-Shop Scheduling Problem by using Genetic Algorithm 97

example, on machine 1, we start to process job 3 at time 0 and finished at 7. Then we
process job 1, followed by job 4, job 5 and job 2.
 We have applied both types of initial population to the data. First we used the
combination of schedules we generated using the priority rules and the randomly
generated schedules as the initial population. From the five runs, we find the optimum
before the generation exceeded 100.
 From the five runs, we could conclude that if we used the randomly generated
schedules as the initial population, we will only find the optimum value at generation
larger than 100. However, both results gave the same makespan value which is 34.

Conclusion
The study on GA and job shop scheduling problem provides a rich experience for the
constrained combinatorial optimization problems. Application of genetic algorithm
gives a good result most of the time. Although GA takes plenty of time to provide a
good result, it provides a flexible framework for evolutionary computation and it can
handle varieties of objective function and constraint.
 For further research, the technique in this paper would be applied to a larger size
problem to see how it performed.

References

[1] Pinedo and X. Chao. Operation Scheduling with Applications in Manufacturing
and Services. McGraw-Hill International Editions. (1999).

[2] T. Jensen and T. K. Hansen. Robust Solutions to Job Shop Problems.
Proceedings of the 1999 Congress on Evolutionary Computation, pages 1138-
1144. (1999).

[3] French. Sequencing and Scheduling : An Introduction to the Mathematics of
the Job Shop. John Willey & Sons Inc, New York USA.(1982).

[4] Yamada and R. Nakano. Genetic Algorithms for Job-shop Scheduling
Problems. Proceedings of Modern Heuristic for Decision Support. Pp. 67-81,
UNICOM Seminar, 18-19 March 1997,London. (1997)

[5] T. Yamada and R. Nakano. Scheduling by Genetic Local Search with Multi-
Step Crossover. The Fourth International Conference on Parallel Problem
Solving from Nature, Berlin, Germany. (1996).

[6] T. Yamada and R. Nakano. A Genetic Algorithm with Multi-Step Crossover for
Job- Shop Scheduling Problems. International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Application (GALESIA
’95). (1995)

98 Smita Verma, Megha Jain and Dinesh Choudhary

Annexure I
On traditionally solving the problem we have the following results.

List of Operations
(Job.Op)

Process Time Remaining Operations
Scheduled (Machine)

Start Time Completion
Time

(1,1), (2,1), (3,1), (4,1), (5,1)
(1,1), (2,1), (3,2), (4,1), (5,1)
(1,2), (2,1), (3,2), (4,1), (5,1)
(1,2), (2,1), (3,2), (4,1), (5,2)
(1,3), (2,1), (3,2), (4,1), (5,2)
(1,3), (2,1), (3,3), (4,1,), (5,2)
(1,3), (2,1), (3,3), (4,2), (5,2)
(1,3), (2,2), (3,3), (4,2), (5,2)
(1,3), (2,2), (3,3), (4,2), (5,3)
(1,3), (2,2), (3,3), (4,3), (5,3)
(1,4), (2,2), (3,3), (4,3), (5,3)
(1,4), (2,2), (3,4), (4,3), (5,3)
(1,4), (2,3), (3,4), (4,3), (5,3)
(1,4), (2,3), (3,4), (4,3), (5,4)
(1,5), (2,3), (3,4), (4,3), (5,4)
(1,5), (2,3), (3,4), (4,4), (5,4)
(1,5), (2,3), (3,5), (4,4), (5,4)
(1,5), (2,3), (3,5), (4,4), (5,5)
(1,5), (2,4), (3,5), (4,4), (5,5)
(1,5), (2,5), (3,5), (4,4), (5,5)
(1,5), (2,5), (3,5), (4,5), (5,5)
(2,5), (3,5), (4,5), (5,5)
(3,5), (4,5), (5,5)
(3,5), (4,5)
(4,5)

27, 20, 31, 21, 25 (3,1)
27, 20, 24, 21, 25 (1,1)
25, 20, 24, 21, 25 (5,1)
25, 20, 24, 21, 20 (1,2)
17, 20, 24, 21, 20 (3,2)
17, 20, 16, 21, 20 (4,1)
17, 20, 16, 17, 20 (2,1)
17, 14, 16, 17, 20 (5,2)
17, 14, 16, 17, 13 (4,2)
17, 14, 16, 12, 13 (1,3)
13, 14, 16, 12, 13 (3,3)
13, 14, 12, 12, 13 (2,2)
13, 9, 12, 12, 13 (5,3)
13, 9, 12, 12, 10 (1,4)
7, 9, 12, 12, 10 (4,3)
7, 9, 12, 7, 10 (3,4)
7, 9, 3, 7, 10 (5,4)
7, 9, 3, 7, 4 (2,3)
7, 7, 3, 7, 4 (2,4)
7, 4, 3, 7, 4 (4,4)
7, 4, 3, 3, 4 (1,5)
4, 3, 3, 4, (2,5)
3, 3, 4, (5,5)
3,3, (3,5)
3, (4,5)

1
3
5
1
5
4
2
3
3
2
4
3
1
4
2
3
2
2
1
1
5
4
4
2
5

0
0
0
7
7
0
0
5
12
15
15
17
15
19
19
22
24
22
26
29
26
29
31
31
33

7
2
5
15
15
4
6
12
17
19
19
22
18
25
24
31
30
26
29
33
33
31
35
34
36

