A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ - Near-Rings

N. Palaniappan¹, P.S. Veerappan² and D. Ezhilmaran²

¹Professor of Mathematics, Alagappa University, Karaikudi – 630 003
Tamilnadu, India. E-mail: palaniappan.nallappan@gmail.com

²Department of Mathematics, K.S.R. College of Technology,

Tiruchengode – 637 215, Tamilnadu, India.
E-mail: peeyesvee@yahoo.co.in, ezhil.devarasan@yahoo.com

Abstract

In this paper, we study some properties of intuitionistic fuzzy ideals of a Γ -near- ring and prove some results on these.

2000 Mathematics Subject Classification: 16D25, 03E72, 03G25.

Keywords and phrases: Γ -near- ring, fuzzy set, intuitionistic fuzzy set, intuitionistic fuzzy ideal.

Introduction

The notion of a fuzzy set was introduced by L.A.Zadeh[10], and since then this concept have been applied to various algebraic structures. The idea of "Intuitionistic Fuzzy Set" was first published by K.T.Atanassov[1] as a generalization of the notion of fuzzy set. Γ - near-rings were defined by Bh.Satyanarayana [9] and G.L.Booth [2, 3] studied the ideal theory in Γ -near-rings. W. Liu[7] introduced fuzzy ideals and it has been studied by several authors. The notion of fuzzy ideals and its properties were applied to semi groups, BCK- algebras and semi rings. Y.B. Jun [5, 6] introduced the notion of fuzzy left (resp.right) ideals. In this paper, we introduce the notion of intuitionistic fuzzy ideals in Γ -near-rings and study some of its properties.

Preliminaries

In this section we include some elementary aspects that are necessary for this paper.

Definition 2.1 A non–empty set R with two binary operations "+" (addition) and "." (multiplication) is called a near-ring if it satisfies the following axioms:

- i. (R, +) is a group,
- ii. (R, .) is a semigroup,
- iii. $(x + y) \cdot z = x \cdot z + y \cdot z$, for all x, y, $z \in R$. It is a right near-ring because it satisfies the right distributive law.

Definition 2.2 A Γ-near-ring is a triple (M, +, Γ) where

- i. (M, +) is a group,
- ii. is a nonempty set of binary operators on M such that for each $\alpha \in \Gamma$, (M, +, α) is a near –ring,
- iii. $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.3 A subset A of a Γ -near-ring M is called a left (resp. right) ideal of M if

- i. (A, +) is a normal divisor of (M, +),
- ii. $u\alpha(x+v) u\alpha v \in A$ (resp. $x\alpha u \in A$) for all $x \in A$, $\alpha \in \Gamma$ and $u, v \in M$.

Definition 2.4 A fuzzy set μ in a Γ -near-ring M is called a fuzzy left (resp.right) ideal of M if

- i. $\mu(x-y) \ge \min\{ \mu(x), \mu(y) \},\$
- ii. $\mu(y + x-y) \ge \mu(x)$, for all $x, y \in M$.
- iii. $\mu(u\alpha(x+v) u\alpha v) \ge \mu(x)$ (resp. $\mu(x\alpha u) \ge \mu(x)$) for all $x, u, v \in M$ and $\alpha \in \Gamma$.

Definition 2.5 [1] Let X be a nonempty fixed set .An intuitionistic fuzzy set (IFS) A in X is an object having the form $A = \{ < x, \, \mu_A(x) \,, \, \nu_A(x) > / \, x \in X \, \}$, where the functions $\mu_A : X \to [0, 1]$ and $\nu_A : X \to [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$.

Notation. For the sake of simplicity, we shall use the symbol $A=<\mu_A, \nu_A>$ for the IFS $A=\{< x, \mu_A(x), \nu_A(x)>/x\in X \}$.

Definition 2.6 [1]. Let X be a non-empty set and let $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ be IFSs in X. Then

- 1. $A \subset B \text{ iff } \mu_A \leq \mu_B \text{ and } \nu_A \geq \nu_B$.
- 2. $A = B \text{ iff } A \subset B \text{ and } B \subset A$.
- 3. $A^c = \langle v_A, \mu_A \rangle$.
- 4. A\cap B = $(\mu_A \wedge \mu_B, \nu_A \vee \nu_B)$.
- 5. A \bigcup B = $(\mu_A \vee \mu_B, \nu_A \wedge \nu_B)$.
- 6. $\Box A = (\mu_A, 1-\mu_A), \Diamond A = (1-\nu_A, \nu_A).$

Definition 2.7. Let μ and ν be two fuzzy sets in a Γ-near-ring For s, $t \in [0, 1]$ the set $U(\mu,s) = \{ x \in \mu(x) \ge s \}$ is called upper level of μ . The set $L(\nu,t) = \{x \in \nu(x) \le t \}$ is

called lower level of v.

Definition 2.8. Let A be an IFS in a Γ – ring M. For each pair < t, s > \in [0, 1] with t + s \leq 1, the set $A_{<t,s>}$ = { $x \in X / \mu_A(x) \geq t$ and $\nu_A(x) \leq s$ } is called a <t, s> – level subset of A .

Definition 2.9. Let $A = \langle \mu_A, \nu_A \rangle$ be an intuitionistic fuzzy set in M and let $t \in [0, 1]$. Then the sets $U(\mu_A; t) = \{x \in M : \mu_A(x) \ge t\}$ and $L(\nu_A; t) = \{x \in M : \nu_A(x) \le t\}$ are called upper level set and lower level set of A respectively.

Intuitionistic fuzzy ideals

In what follows, let M denote a Γ -near-ring unless otherwise specified.

Definition 3.1. An IFS $A=\langle \mu_A, \nu_A \rangle$ in M is called an intuitionistic fuzzy left (resp. right) ideal of a $\Gamma-$ near-ring M if

- 1. $\mu_A(x-y) \ge \{ \mu_A(x) \land \mu_A(y) \},\$
- 2. $\mu_A(y + x y) \ge \mu_A(x)$,
- 3. $\mu_A(u\alpha(x+v)-u\alpha v) \ge \mu_A(x)$ (resp. $\mu_A(x\alpha u) \ge \mu_A(x)$),
- 4. $v_A(x-y) \le \{ v_A(x) \lor v_A(y) \},$
- 5. $v_A(y+x-y) \le v_A(x)$,
- 6. $v_A(u\alpha(x+v)-u\alpha v) \le v_A(x)$ (resp. $v_A(x\alpha u) \le v_A(x)$),

for all $x, y, u, v \in M$ and $\alpha \in \Gamma$.

Example 3.2. Let R be the set of all integers then R is a ring.

Take $M = \Gamma = R$. Let $a, b \in M, \ \alpha \in \Gamma,$ suppose a αb is the product of a, α , $b \in R$.

Then M is a Γ - near-ring.

Define an IFS $A = \langle \mu_A, \nu_A \rangle$ in R as follows.

$$\mu_A(0) = 1$$
 and $\mu_A(\pm 1) = \mu_A(\pm 2) = \mu_A(\pm 3) = = t$ and $\nu_A(0) = 0$ and $\nu_A(\pm 1) = \nu_A(\pm 2) = \nu_A(\pm 3) = = s$, where $t \in [0, 1]$, $s \in [0, 1]$ and $t + s \le 1$.

By routine calculations, clearly A is an intuitionistic fuzzy ideal of a Γ - near-ring R.

Theorem 3.3. A is an ideal of a Γ -near-ring M if and only if $\tilde{A} = \langle \mu_{\tilde{A}}, \nu_{\tilde{A}} \rangle$ where

$$\mu_{\tilde{A}}(x) = \begin{cases} 1 & x \in A \\ 0 & Otherwise \end{cases} \quad v_{\tilde{A}}(x) = \begin{cases} 0 & x \in A \\ 1 & Otherwise \end{cases}$$

is an intuitionistic fuzzy left (resp.right) ideal of M.

Proof (\Rightarrow) : Let A be a left (resp.right) ideal of M.

Let x , y, u, $v \in M$ and $\alpha \in \Gamma$.

If x, y \in A, then x - y \in A, y + x - y \in A and $(u\alpha(x + v) - u\alpha v) \in$ A. Therefore

$$\begin{split} & \mu_{\tilde{A}}(x-y) = 1 \geq \{ \ \mu_{\tilde{A}}(x) \wedge \mu_{\tilde{A}}(y) \ \}, \\ & \mu_{\tilde{A}}(y+x-y) = 1 \geq \mu_{\tilde{A}}(x) \ \text{and} \\ & \mu_{\tilde{A}}(u\alpha(x+v) - u\alpha v) = 1 = \mu_{\tilde{A}}(x) \ (\text{resp. } \mu_{\tilde{A}}(x\alpha u) = \mu_{\tilde{A}}(x) = 1), \\ & \nu_{\tilde{A}}(x-y) = 0 \leq \{ \nu_{\tilde{A}}(x) \vee \nu_{\tilde{A}}(y) \ \}, \\ & \nu_{\tilde{A}}(y+x-y) = 0 \leq \nu_{\tilde{A}}(x) \ \text{and} \\ & \nu_{\tilde{A}}(u\alpha(x+v) - u\alpha v) = 0 = \nu_{\tilde{A}}(x) \ (\text{resp. } \nu_{\tilde{A}}(x\alpha u) = \nu_{\tilde{A}}(x) = 0). \end{split}$$

If $x \notin A$ or $y \notin A$ then $\mu_{\tilde{A}}(x) = 0$ or $\mu_{\tilde{A}}(y) = 0$. Thus we have

$$\begin{split} & \mu_{\tilde{A}}(x-y) \geq \{ \ \mu_{\tilde{A}}(x) \wedge \mu_{\tilde{A}}(y) \ \}, \mu_{\tilde{A}}(y+x-y) \geq \mu_{\tilde{A}}(x) \ \text{and} \\ & \mu_{\tilde{A}}(u\alpha(x+v) \text{-}u\alpha v) \geq \mu_{\tilde{A}}(x) \ (\text{resp.} \ \mu_{\tilde{A}}(x\alpha u) \geq \mu_{\tilde{A}}(x)), \\ & \nu_{\tilde{A}}(x-y) \leq \{ \nu_{\tilde{A}}(x) \vee \nu_{\tilde{A}}(y) \ \}, \nu_{\tilde{A}}(y+x-y) \leq \nu_{\tilde{A}}(x) \ \text{and} \\ & \nu_{\tilde{A}}(u\alpha(x+v) \text{-}u\alpha v) \leq \nu_{\tilde{A}}(x) \ (\text{resp.} \ \nu_{\tilde{A}}(x\alpha u) \leq \nu_{\tilde{A}}(x)). \end{split}$$

Hence \tilde{A} is an intuitionistic fuzzy left (resp.right) ideal of M. (\Leftarrow): Let \tilde{A} be an intuitionistic fuzzy left (resp.right) ideal of M. Let $x, y \in M$ and $\alpha \in \Gamma$.

If x, y, u,
$$v \in A$$
, then
 $u_{\bar{x}}(x-v) > \{ \}$

$$\mu_{\tilde{A}}(x-y) \ge \{ \mu_{\tilde{A}}(x) \land \mu_{\tilde{A}}(y) \} = 1$$

$$\nu_{\tilde{A}}(x-y) \le \{ \nu_{\tilde{A}}(x) \lor \nu_{\tilde{A}}(y) \} = 0$$

So $x-y \in A$.

$$\begin{split} & \mu_{\tilde{A}}(y+x-y) \geq \mu_{\tilde{A}}(x\;) = 1 \\ & \nu_{\tilde{A}}(y+x-y) \leq \nu_{\tilde{A}}(x\;) = 0 \end{split}$$

So
$$(y + x - y) \in A$$
.
Also

$$\mu_{\tilde{\Lambda}}(u\alpha(x+v) - u\alpha v) \ge \mu_{\tilde{\Lambda}}(x) = 1 \text{ (resp. } \mu_{\tilde{\Lambda}}(x\alpha u) = \mu_{\tilde{\Lambda}}(x) = 1)$$

 $\nu_{\tilde{\Lambda}}(u\alpha(x+v) - u\alpha v) \le \nu_{\tilde{\Lambda}}(x) = 0 \text{ (resp. } \nu_{\tilde{\Lambda}}(x\alpha u) = \nu_{\tilde{\Lambda}}(x) = 0)$

So $(u\alpha(x + v) - u\alpha v) \in A$.

Hence A is a left (resp.right) ideal of M.

Theorem 3.4. Let A be an intuitionistic fuzzy left (resp.right) ideal of M and $t \in [0,1]$, then

- I. $U(\mu_A; t)$ is either empty or an ideal of M.
- II. $L(v_A; t)$ is either empty or an ideal of M.

Proof. (i) Let
$$x, y \in U(\mu_A; t)$$
.

Then
$$\mu_A(x-y) \ge \{ \mu_A(x) \land \mu_A(y) \} \ge t$$
,
Hence $x-y \in L(\nu_A; t)$.
$$\mu_A(y+x-y) \ge \mu_A(x) \ge t$$

Hence
$$(y + x - y) \in U(\mu_A; t)$$
.

```
Let x \in M, \alpha \in \Gamma and u, v \in U(\mu_A\,;\,t).
 Then \mu_A(u\alpha(x+v)-u\alpha v) \geq \mu_A(x) \geq t and so (u\alpha(x+v)-u\alpha v) \in U(\mu_A\,;\,t).
 Hence U(\mu_A\,;\,t) is an ideal of M.

III.Let x, y \in L(v_A\,;\,t).
 Then v_A(x-y) \leq \{v_A(x) \vee v_A(y)\} \leq t.
 Hence x-y \in L(v_A\,;\,t).
 v_A(y+x-y) \leq v_A(x) \leq t.
 Hence (y+x-y) \in L(v_A\,;\,t).
 Let x \in M, \alpha \in \Gamma and u, v \in L(v_A\,;\,t).
 Then v_A(u\alpha(x+v)-u\alpha v) \leq v_A(x) \leq t and so (u\alpha(x+v)-u\alpha v) \in L(v_A\,;\,t).
 Hence L(v_A\,;\,t) is an ideal of M.
```

Theorem 3.5. Let I be the left (resp.right) ideal of M. If the intuitionistic fuzzy set $A = \langle \mu_A, \nu_A \rangle$ in M is defined by

$$\mu_{A}(x) = \begin{cases} p & \text{if } x \in I \\ s & \text{Otherwise} \end{cases} \text{ and } \nu_{A}(x) = \begin{cases} u & \text{if } x \in I \\ v & \text{Otherwise} \end{cases}$$

for all $x \in M$ and $\alpha \in \Gamma$, where $0 \le s < p$, $0 \le v < u$ and $p + u \le 1$, $s + v \le 1$, then A is an intuitionistic fuzzy left (resp.right) ideal of M and $U(\mu_A; p) = I = L(\nu_A; u)$.

```
Proof . Let x, y \in M and \alpha \in \Gamma.
```

If at least one of x and y does not belong to I, then

```
\mu_A(x-y) \ge s = {\{\mu_A(x) \land \mu_A(y)\}},
v_A(x-y) \le v = \{v_A(x) \lor v_A(y)\}.
If x, y \in I, then
x - y \in I and so \mu_A(x-y) = p = \{\mu_A(x) \land \mu_A(y)\} and
v_A(x-y) = v = \{v_A(x) \lor v_A(y)\}.
\mu_A(y+x-y) \ge s = \mu_A(x),
v_A(y+x-y) \le v = v_A(x).
If x, y \in I, then
(y + x - y) \in I and so \mu_A(y + x - y) = p = \mu_A(x) and
v_A(y + x - y) = v = v_A(x).
If u, v \in I, x \in M and \alpha \in \Gamma, then (u\alpha(x + v) - u\alpha v) \in I,
\mu_A(u\alpha(x+v) - u\alpha v) = p = \mu_A(x) and \nu_A(u\alpha(x+v) - u\alpha v) = u = \nu_A(x).
(resp. \mu_A(x\alpha u) = p = \mu_A(x) and \nu_A(x\alpha x) = u = \nu_A(x))
If y \notin I, then \mu_A(u\alpha(x+v) - u\alpha v) = s = \mu_A(x), \nu_A(u\alpha(x+v) - u\alpha v) = v = \nu_A(x).
(resp., \mu_A(x\alpha u) = s = \mu_A(x) and \nu_A(x\alpha u) = v = \nu_A(x))
Therefore A is an intuitionistic fuzzy left (resp.right) ideal.
```

Definition3.6. Let f be a mapping from a Γ -near-ring M onto a Γ -near-ring N. Let A

be an intuitionistic fuzzy ideal of M. Now A is said to be f-invariant if f(x) = f(y) implies $\mu_A(x) = \mu_A(y)$ and $\nu_A(x) = \nu_A(y)$.

Definition 3.7 [2]. A function $f: M \to N$, where M and N are Γ -near-rings, is said to be a Γ -homomorphism if f(a + b) = f(a) + f(b), $f(a\alpha b) = f(a)\alpha f(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

Definition 3.8 Let $f: X \to Y$ be a mapping of a Γ -near-ring and A be an intuitionistic fuzzy set of Y. Then the map $f^{-1}(A)$ is the pre-image of A under f, if $\mu_f^{-1}(A)(x) = \mu_A(f(x))$ and $\nu_f^{-1}(A)(x) = \nu_A(f(x))$, for all $x \in X$.

Definition 3.9. Let f be a mapping from a set X to the set Y. If $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ are intuitionistic fuzzy subsets in X and Y respectively, then the image of A under f is the intuitionistic fuzzy set $f(A) = \langle \mu_{f(A)}, \nu_{f(A)} \rangle$ defined by

$$\mu_{f^{-1}(A)}(x) = \begin{cases} \bigvee_{x \in f^{-1}(y)} \mu_{A}(x) & \text{if } f^{-1}(y) \neq \varphi, \\ 0 & \text{Otherwise,} \end{cases}$$

$$\nu_{f^{-1}(A)}(x) = \begin{cases} \bigwedge_{x \in f^{-1}(y)} \nu_{A}(x) & \text{if } f^{-1}(y) \neq \varphi, \\ 1 & \text{Otherwise,} \end{cases}$$

for all $y \in Y$.

(b) the pre image of A under f is the intuitionistic fuzzy set $f^{-1}(B) = \langle \mu_f^{-1}(B), \nu_f^{-1}(B) \rangle$ defined by

$$\mu_{f^{-1}(B)}(x) = \begin{cases} \bigvee_{y \in f^{-1}(x)} \mu_{B}(y) & \text{if } f^{-1}(x) \neq \varphi, \\ 0 & \text{Otherwise,} \end{cases}$$

$$\nu_{f^{-1}(B)}(x) = \begin{cases} \bigwedge_{y \in f^{-1}(x)} \nu_{A}(y) & \text{if } f^{-1}(x) \neq \varphi, \\ 1 & \text{Otherwise,} \end{cases}$$

for all $x \in X$, where $\mu_f^{-1}(B)(x) = \mu_B(f(x))$ and $\nu_f^{-1}(B)(x) = \nu_B(f(x))$.

Theorem 3.10. Let M and N be two Γ -near-rings and $\theta: M \to N$ be a Γ - epimorphism and let $B = \langle \mu_B, \nu_B \rangle$ be an intuitionistic fuzzy set of N. If $\theta^{-1}(B) = \langle \mu_{\theta^{-1}(B)}, \nu_{\theta^{-1}(B)} \rangle$ is an intuitionistic fuzzy left (resp.right) ideal of M, then B is an intuitionistic fuzzy left (resp.right) ideal of N.

Proof. Let x, y, u, $v \in N$ and $\alpha \in \Gamma$, then there exists a, b, c, $d \in M$ such that $\theta(a) = x$, $\theta(b) = y$, $\theta(c) = u$, $\theta(d) = v$.

$$\begin{split} &\text{It follows that } \mu_B(x-y) = \mu_B(\theta(a) - \theta(b)) = \mu_B(\theta(a-b)) \\ &= \mu_{\theta}^{-1}{}_{(B)}(a-b) \geq \{\ \mu_{\theta}^{-1}{}_{(B)}(a) \wedge \mu_{\theta}^{-1}{}_{(B)}(b)\} \\ &= \ \{\mu_B(\theta\ (a)) \wedge \mu_B(\theta(b))\} \end{split}$$

```
= \{ \mu_B(x) \wedge \mu_B(y) \}
v_B(x-y) = v_B(\theta(a)-\theta(b)) = v_B(\theta(a-b))
= \nu_{\theta^{-1}(B)}(a-b) \le \{\nu_{\theta^{-1}(B)}(a) \lor \nu_{\theta^{-1}(B)}(b)\}
= \{ v_B(\theta(a)) \vee v_B(\theta(b)) \}
= \{ v_B(x) \vee v_B(y) \}.
\mu_B(y + x - y) = \mu_B(\theta(b) + \theta(a) - \theta(b)) = \mu_B(\theta(b + a - b))
= \mu_{\theta}^{-1}{}_{(B)}(b + a - b) \ge \mu_{\theta}^{-1}{}_{(B)}(a)
= \mu_B(\theta(a))
= \mu_B(x)
v_B(y + x - y) = v_B(\theta(b) + \theta(a) - \theta(b)) = v_B(\theta(b + a - b))
= v_{\theta}^{-1}{}_{(B)}(b + a - b) \le v_{\theta}^{-1}{}_{(B)}(a)
= v_B(\theta(a))
= v_B(x).
Also
\mu_B(u\alpha(x + v) - u\alpha v) = \mu_B(\theta(c)\alpha(\theta(a) + \theta(d)) - \theta(c)\alpha\theta(d)) = \mu_B(\theta(c\alpha(a + d) - c\alpha d))
=\mu_{\theta}^{-1}{}_{(B)}(c\alpha(a+d)-c\alpha d) \ge \mu_{\theta}^{-1}{}_{(B)}(a) = \mu_{B}(\theta(a)) = \mu_{B}(x)
v_B(u\alpha(x+v) - u\alpha v) = v_B(\theta(c)\alpha(\theta(a) + \theta(d)) - \theta(c)\alpha\theta(d)) = v_B(\theta(c\alpha(a+d) - c\alpha d))
= v_{\theta}^{-1}{}_{(B)}(c\alpha(a+d)-c\alpha d) \le v_{\theta}^{-1}{}_{(B)}(a) = v_{B}(\theta(a)) = \mu_{B}(x)
```

Similarly, $\mu_B(x\alpha u) \ge \mu_B(x)$ and $\nu_B(x\alpha u) \le \nu_B(x)$.

Hence B is an intuitionistic fuzzy left (resp. right) ideal of N.

Theorem 3.11. An intuitionistic fuzzy set $A = \langle \mu_A, \nu_A \rangle$ in a Γ -near-ring M is an intuitionistic fuzzy left (resp. right) ideal if and only if $A_{\langle t, s \rangle} = \{ x \in M \mid \mu_A(x) \geq t, \nu_A(x) \leq s \}$ is a left (resp.right) ideal of M for $\mu_A(0) \geq t, \nu_A(0) \leq s$.

Proof.(\Rightarrow) Suppose that $A = \langle \mu_A, \nu_A \rangle$ is an intuitionistic fuzzy left (resp.right) ideal of M and let $\mu_A(0) \ge t$, $\nu_A(0) \le s$. Let x, y, u, $\nu \in A_{<t,s>}$ and $\alpha \in \Gamma$.

```
Then \mu_A(x) \geq t, \nu_A(x) \leq s and \mu_A(y) \geq t, \nu_A(y) \leq s. Hence \mu_A(x-y) \geq \{\mu_A(x) \wedge \mu_A(y)\} \geq t, \nu_A(x-y) \leq \{\nu_A(x) \vee \nu_A(y)\} \leq s. \mu_A(y+x-y) \geq \mu_A(x) \geq t, \nu_A(y+x-y) \leq \nu_A(x) \leq s. \mu_A(u\alpha(x+v) - u\alpha v) \geq \mu_A(x) \geq t and \nu_A(u\alpha(x+v) - u\alpha v) \leq \nu_A(x) \leq s (resp. \mu_A(x\alpha u) \geq \mu_A(x) \geq t and \nu_A(x\alpha u) \leq \nu_A(x) \leq s.
```

Therefore $x-y \in A_{<t,s>}$, $(y+x-y) \in A_{<t,s>}$ and $(u\alpha(x+v) - u\alpha v) \in A_{<t,s>}$ for all x, $y \in A_{<t,s>}$ and $\alpha \in \Gamma$.

So $A_{\langle t,s\rangle}$ is a left (resp. right) ideal of M.

(\Leftarrow) Suppose that $A_{< t,s>}$ is a left (resp. right) ideal of M for $\mu_A(0) \ge t$ and $\nu_A(0) \le s$.

```
Let x, y \in M be such that \mu_A(x) = t_1, \nu_A(x) = s_1, \mu_A(y) = t_2 and \nu_A(y) = s_2.
```

```
Then x \in A_{< t_1, s_1} and y \in A_{< t_2, s_2}. We may assume that t_2 \le t_1 and s_2 \ge s_1 without loss of generality. It follows that A_{< t_2, s_2} = A_{< t_1, s_1} so that x, y \in A_{< t_1, s_2}. Since A_{< t_1, s_1} is an ideal of M, we have x-y \in A_{< t_1, s_2} (y + x - y) \in A_{< t_1, s_2} and (u\alpha(x+v) - u\alpha v) \in A_{< t_1, s_2} for all \alpha \in \Gamma. \mu_A(x-y) \ge t_1 \ge t_2 = \{\mu_A(x) \wedge \mu_A(y)\}, \nu_A(x-y) \le s_1 \le s_2 = \{\nu_A(x) \vee \nu_A(y)\}. \mu_A(y+x-y) \le t_1 \ge t_2 = \mu_A(x), \nu_A(y+x-y) \le s_1 \le s_2 = \nu_A(x). \mu_A(u\alpha(x+v) - u\alpha v) \ge t_1 \ge t_2 = \mu_A(x) and \nu_A(u\alpha(x+v) - u\alpha v) \le s_1 \le s_2 = \nu_A(x).
```

Therefore A is an intuitionistic fuzzy left (resp.right) ideal of M.

Theorem 3.12. If the IFS $A = \langle \mu_A, \nu_A \rangle$ is an intuitionistic fuzzy left (resp.right) ideal of a Γ -near-ring M, then the sets $M\mu_A = \{x \in M / \mu_A(x) = \mu_A(0)\}$ and $M\nu_A = \{x \in M / \nu_A(x) = \nu_A(0)\}$ are left (resp.right) ideals.

```
Proof. Let x, y, u, v \in M\mu_A and \alpha \in \Gamma.
    Then \mu_A(x) = \mu_A(0), \mu_A(y) = \mu_A(0).
    Since A is an intuitionistic fuzzy left (resp.right) ideal of a \Gamma-near-ring M, we get
    \mu_A(x-y) \ge \{\mu_A(x) \wedge \mu_A(y)\} = \mu_A(0).
    But \mu_A(0) \ge \mu_A(x-y). So x-y \in M\mu_A.
    \mu_A(y + x - y) \ge \mu_A(x) = \mu_A(0).
    But \mu_A(0) \ge \mu_A(y + x - y). So (y + x - y) \in M\mu_A.
    \mu_A(u\alpha(x + v) - u\alpha v) \ge \mu_A(x) = \mu_A(0) (resp. \mu_A(x\alpha u) \ge \mu_A(x) = \mu_A(0)).
    Hence (u\alpha(x + v) - u\alpha v) \in M\mu_A.
    Therefore M\mu_A is a left (resp.right) ideal of M.
    Similarly, let x, y, u, v \in Mv_A and \alpha \in \Gamma. Then v_A(x) = v_A(0), v_A(y) = v_A(0).
    Since A is an intuitionistic fuzzy left (resp.right) ideal of a \Gamma-near-ring M,
    v_A(x-y) \le \{v_A(x) \lor v_A(y)\} = v_A(0).
    But v_A(0) \le v_A(x-y). So x-y \in Mv_A.
    v_A(y + x - y) \le v_A(x) = v_A(0).
    But v_A(0) \le v_A(y + x - y). So (y + x - y) \in Mv_A.
    v_A(u\alpha(x+v)-u\alpha v) \le v_A(x) = v_A(0) (resp. v_A(x\alpha u) \le v_A(x) = v_A(0)).
    Hence (u\alpha(x+v) - u\alpha v) \in Mv_A.
    Therefore Mv<sub>A</sub> is a left (resp.right) ideal of M.
```

Definition 3.13. A Γ -near-ring M is said to be regular if for each $a \in M$ there exists

an $x \in M$ and α , $\beta \in \Gamma$ such that $a = a\alpha x \beta a$.

Definition 3.14. Let $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ be two intuitionistic fuzzy subsets of a Γ-near-ring M. The product AΓB is defined by

$$\mu_{\text{A}\Gamma\text{B}}(\mathbf{x}) = \begin{cases} \bigvee_{x = (u\gamma(v+w) - u\gamma w)} \left(\mu_{\text{A}}(\mathbf{u}) \wedge \mu_{\text{B}}(v)\right) & \text{if} \quad x = (u\gamma(v+w) - u\gamma w), u, v, w \in \mathbf{M}, \quad \gamma \in \Gamma \\ 0 & \text{otherwise}, \end{cases}$$

$$\nu_{\text{A}\Gamma\text{B}}(\mathbf{x}) = \begin{cases} \bigwedge_{x = (u\gamma(v+w) - u\gamma w)} \left(\nu_{\text{A}}(\mathbf{u}) \vee \nu_{\text{B}}(v)\right) & \text{if} \quad x = (u\gamma(v+w) - u\gamma w), u, v, w \in \mathbf{M}, \quad \gamma \in \Gamma \\ 1 & \text{otherwise}. \end{cases}$$

Theorem 3.15. If $A = \langle \mu_A, \nu_A \rangle$ and $B = \langle \mu_B, \nu_B \rangle$ are two intuitionistic fuzzy left (resp. right) ideals of M, then $A \cap B$ is an intuitionistic fuzzy left (resp. right) ideal of M. If A is an intuitionistic fuzzy right ideal and B is an intuitionistic fuzzy left ideal, then $A \cap B \subseteq A \cap B$.

Proof. Suppose A and B are intuitionistic fuzzy ideals of M and let x, y, z, z' \in M and $\alpha \in \Gamma$.

```
Then  \mu_{A \cap B}(x-y) = \mu_A(x-y) \wedge \mu_B(x-y)   \geq \left[ \mu_A(x) \wedge \mu_A(y) \right] \wedge \left[ \mu_B(x) \wedge \mu_B(y) \right]   = \left[ \mu_A(x) \wedge \mu_B(x) \right] \wedge \left[ \mu_A(y) \wedge \mu_B(y) \right]   = \mu_{A \cap B}(x) \wedge \mu_{A \cap B}(y),   \nu_{A \cap B}(x-y) = \nu_A(x-y) \vee \nu_B(x-y)   \leq \left[ \nu_A(x) \vee \nu_A(y) \right] \vee \left[ \nu_B(x) \vee \nu_B(y) \right]   = \left[ \nu_A(x) \vee \nu_B(x) \right] \vee \left[ \nu_A(y) \vee \nu_B(y) \right]   = \left[ \nu_A(x) \vee \nu_A(y) \right] \vee \left[ \nu_A(y) \vee \nu_B(y) \right]   = \left[ \nu_A(x) \vee \nu_A(y) \right] \vee \left[ \nu_A(y) \vee \nu_B(y) \right]   = \nu_A(y) \wedge \left[ \mu_B(x) \right]   \geq \left[ \mu_A(x) \right] \wedge \left[ \mu_B(x) \right]   = \mu_A(x) \wedge \mu_A(y),   \nu_A(y) \wedge \nu_A(y) \wedge \nu_A(y)   \leq \left[ \nu_A(x) \right] \vee \left[ \nu_B(x) \right]   = \nu_A(x) \vee \nu_A(y) \wedge \nu_A(y)   \leq \left[ \nu_A(x) \right] \vee \left[ \nu_B(x) \right]   = \nu_A(y) \wedge \nu_A(y) \wedge \nu_A(y)
```

Since A and B are intuitionistic fuzzy ideals of M, we have $\mu_A(x\alpha(y+z)-x\alpha z) \geq \mu_A(x) \ , \ \nu_A(x\alpha(y+z)-x\alpha z) \leq \nu_A(x) \qquad \text{and} \qquad \mu_B(y\alpha x) \geq \mu_B(x), \\ \nu_B(y\alpha x) \leq \nu_B(x).$

Now $\mu_{A\cap B}(x\alpha(y+z)-x\alpha z)=\mu_A\left(x\alpha(y+z)-x\alpha z\right)\wedge\mu_B\left(x\alpha(y+z)-x\alpha z\right)$ $\geq \mu_A(x)\wedge\mu_B(x)=\mu_{A\cap B}(x)(resp.\ \mu_{A\cap B}(y\alpha x)\geq \mu_{A\cap B}(x)),$ $\nu_{A\cap B}(x\alpha(y+z)-x\alpha z)=\nu_A(x\alpha(y+z)-x\alpha z)\vee\nu_B(x\alpha(y+z)-x\alpha z)$ $\geq \nu_A(x)\vee\nu_B(x)=\nu_{A\cap B}(x)(resp.\ \nu_{A\cap B}(y\alpha x)\leq \nu_{A\cap B}(x)).$ Hence $A\cap B$ is an intuitionistic fuzzy left ideal of M.

To prove the second part if $\mu_{A\Gamma B}(x) = 0$ and $\nu_{A\Gamma B}(x) = 1$, there is nothing to show. From the definition of $A\Gamma B$, $\mu_A(x) = \mu_A(y\alpha(z+z')-y\alpha z') \ge \mu_A(z)$, $\nu_A(x) = \nu_A(y\alpha(z+z')-y\alpha z') \le \nu_A(z)$.

Since A is an intuitionistic fuzzy right ideal and B is an intuitionistic fuzzy left ideal, we have

$$\begin{split} & \mu_A(x) = \mu_A(z\alpha y) \geq \mu_A(z), \ \nu_A(x) = \nu_A(z\alpha y) \leq \nu_A(z), \\ & \mu_B(x) = \mu_B(z\alpha y) \geq \mu_B(z), \ \nu_B(x) = \nu_B(z\alpha y) \leq \nu_B(z). \\ & \text{Hence by Definition 3.5,} \\ & \mu_{A\Gamma B}(x) = \bigvee_{x=y\alpha z} \left\{ \mu_A(y) \wedge \mu_B(z) \right\} \\ & \leq \mu_A(x) \wedge \mu_B(x) \\ & = \mu_{A\cap B}(x) \\ & \text{and} \\ & \nu_{A\Gamma B}(x) = \bigwedge_{x=y\alpha z} \left\{ \nu_A(y) \vee \nu_B(z) \right\} \\ & \geq \nu_A(x) \vee \nu_B(x) \\ & = \nu_{A\cap B}(x) \ \text{which means that } A\Gamma B \subseteq A\cap B. \end{split}$$

Theorem 3.16. A Γ -near-ring M is regular if and only if for each intuitionistic fuzzy right ideal A and each intuitionistic fuzzy left ideal B of M , $A\Gamma B = A \cap B$.

Proof. (\Rightarrow) Suppose R is regular. A\Gamma B \subseteq A\cap B. Thus it is sufficient to show that A\cap B \subseteq A\Gamma B. Let a \in M and \alpha, \beta \in \Gamma. Then, by hypothesis, there exists an x\in M such that a = a\alpha x\beta a.

```
Thus \begin{split} &\mu_A(a) = \mu_A(a\alpha x\beta a) \geq \mu_A(a\alpha x) \geq \mu_A(a), \\ &\nu_A(a) = \nu_A(a\alpha x\beta a) \leq \nu_A(a\alpha x) \leq \nu_A(a). \end{split} So &\mu_A(a\alpha x) = \mu_A(a) \text{ and } \nu_A(a\alpha x) = \nu_A(a). On the other hand, &\mu_{A\Gamma B}(a) = \vee_{a=a\alpha x\beta a} \left[ \mu_A(a\alpha x) \wedge \mu_B(a) \right] \geq \left[ \mu_A(a) \wedge \mu_B(a) \right] = \mu_{A\cap B}(a) \text{ and } \\ &\nu_{A\Gamma B}(a) = \wedge_{a=a\alpha x\beta a} \left[ \nu_A(a\alpha x) \vee \nu_B(a) \right] \leq \left[ \nu_A(a) \vee \nu_B(a) \right] = \nu_{A\cap B}(a). \end{split} Thus &A \cap B \subseteq A\Gamma B \text{ . Hence } A\Gamma B = A \cap B.
```

References

- [1] Atanassov. K., 1986, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1), pp. 87-96.
- [2] Booth. G.L., 1988, A note on Γ -near-rings Stud. Sci. Math. Hung. 23, pp. 471-475.

- [3] Booth. G.L. 1987, Jacobson radicals of Γ-near-rings Proceedings of the Hobart Conference, Longman Sci. & technical, pp. 1-12.
- [4] Jun. Y.B., Sapanci. M. and Ozturk. M.A., 1998, Fuzzy ideals in Gamma near rings, Tr. J. of Mathematics 22, pp. 449-459.
- [5] Jun. Y.B., Kim. K. H. and Ozturk. M. A., 2001, On fuzzy ideals of gamma near-rings, J.Fuzzy Math. 9(1), 51-58.
- [6] Jun. Y. B., Kim. K. H. and Ozturk. M. A., 2001, Fuzzy Maximal ideals in gamma near-rings, Tr. J. of Mathematics 25, pp. 457-463.
- [7] Liu. W., 1982, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8, pp. 133-139.
- [8] Palaniappan. N., Veerappan. P. S., Ezhilmaran. D.,2009, Some properties of intuitionistic fuzzy ideals in Γ-near-rings, Journal of Indian Acad. Maths, 31(2), pp. 617-624.
- [9] Satyanarayana Bh., 1984, Contributions to near-ring theory, Doctoral Thesis, Nagarjuna Univ.
- [10] Zadeh. L.A..1965, Fuzzy sets, Information and control, 8, pp. 338-353.