
International Journal of Computer and Internet Security.
ISSN 0974-2247 Volume 5, Number 1 (2013), pp. 11-18
© International Research Publication House
http://www.irphouse.com

Single-Keyword Pattern Matching Algorithms for
Network Intrusion Detection System

K. Prabha* and Dr. S. Sukumaran

1Ph.D. Research Scholar, Erode Arts and Science College,
Erode–638009, Tamil Nadu, India.

E-mail: prabhaeac@gmail.com
2Associate Professor of Computer Science, Erode Arts and Science College,

Erode–638009, Tamil Nadu, India.
E-mail: prof.sukumaran1@gmail.com

Abstract

The Network Intrusion Detection System (NIDS) is an important part of
any modern network. One of the important processes in NIDS is
inspecting of individuals’ packets in network traffic, deciding if these
packets are infected with any malicious activities. This process, which is
called content matching, is done via string matching algorithms. The
content matching is considered the heart of NIDS. The content matching
phase consumes most of the processing time inside the NIDS and slowed
down around 70% of NIDS performance. In this case, it is difficult for
NIDS to distinguish between normal network packets and abnormal
network packets and consequently drop numbers of network packets. New
algorithms are needed to enhance the matching since enormous packets
are passing through the network every second. In this paper we presented
a survey of single keyword pattern matching algorithms for NIDS.

Introduction
Over the years, pattern-matching has been routinely used in various computer
applications, for example, in editors, retrieval of information (from text, image, or
sound), and searching nucleotide or amino acid sequence patterns in genome and
protein sequence databases. The present day pattern-matching algorithms match the
pattern exactly or approximately within the text. An exact pattern-matching is to find
all the occurrences of a particular pattern (x= x1 x2 ... xm) of m-characters in a text (y=
y1 y2 ... yn) of n-characters which are built over a finite set of characters of an alphabet
set. The direct way to this problem is to compare the first m-characters of the text and

12 K. Prabha and Dr. S. Sukumaran

the pattern in some predefined order and, after a match or a mismatch, slide the entire
pattern by one character in the forward direction of the text. This process is repeated
until the pattern is positioned at the (n-m+1) position of the text. This approach is
commonly known as a brute-force method. To facilitate this task, several algorithms
have been proposed, and these have their own advantages and limitations based on the
pattern length.
Network intrusion detection systems are fundamental security applications that are
growing in popularity in various network environments. The heart of almost every
modern NIDS has a string matching algorithm. The NIDS uses string matching to
compare the payload of the network packet and/or flow against the pattern entries of
intrusion detection rules [1, 2].

Single-Keyword Pattern Matching Algorithms
String matching algorithms are widely used in many applications which includes the
NIDS [9]. These string matching algorithms are used to inspect the content of packets
and identify the attacks signature in NIDS. String matching consists of finding one, or
more generally, of all the occurrences of a search string in an input string. In NIDS
applications, the pattern is the search string, while the payload is the input string. If
more than one search string simultaneously matches against the input string, this is
called multiple pattern matching. Otherwise, it is called single pattern matching. In
this work, we have taken only the single keyword pattern matching algorithms.

The Boyer-Moore Algorithm (BM)
The Boyer-Moore algorithm is one of the famous exact string matching algorithms
that used in single pattern matching and it considers very fast in its performance. The
algorithm uses two tables or functions, which is used to move the sliding window to
the right. The first table is called “bad character shift”, while the second table called
“good suffix shift”. The algorithm is faster when it is working with small pattern size,
but it is slower when it is working with large pattern size [11]. The BM algorithm is
given below:

Algorithm BoyerMoore (T, P, S)
L=occFunction ()
i=m-1
j=m-1
while i > n-1
{
if T[i]=P[j]
if j=0
return i //match at i
else
i=i-1
j=j-1

Single-Keyword Pattern Matching Algorithms for Network Intrusion Detection System 13

else //character-jump
l=L[T[i]]
i=i + m–min(j, 1 + l)
j=m-1
}
return -1 //no match
void occFunction()
{
char a;
int j;
for (a=0; a < alphabetsize; a++)
occ[a] =- 1;
for (j=0; j < m; j++)
{
a=p[j];
occ[a]=j;
}
}
The algorithm preprocesses the pattern and creates two tables, which are known as
Boyer-Moore bad character (bmBc) and Boyer-Moore good-suffix (bmGs) tables. For
each character in the alphabet set, a bad-character table stores the shift value based on
the occurrence of the character in the pattern. On the other hand, a good-suffix table
stores the matching shift value for each character in the pattern. The maximum of the
shift value between the bmBc (character in the text due to which a mismatch
occurred) dependent expression and from the bmGs table for a matching suffix is
considered after each attempt, during the searching phase. This algorithm forms the
basis for several pattern-matching algorithms.

The Horspool Algorithm (HP)
The Horspool algorithm is a derivative of Boyer-Moore and is easy to implement.
Horspool algorithm is considered to be one of string matching algorithm that used in
network intrusion detection system based on Boyer Moore algorithm. Horspool
algorithm is easy and works in any order. Snort NIDS uses a modified version of the
algorithm called Boyer-Moore-Horspool algorithm to maintain memory usage and
speed up during searching phase. Unlike Boyer-Moore algorithm, which uses two
tables; bad character shift and good suffix shift, the Horspool algorithm uses only one
table (bad character shift).When the alphabet size is large and the length of the pattern
is small, it is not efficient to use Boyer-Moore’s bad-character technique. Instead, it is
always enough to find the bad-character shift of the right-most character of the
window to compute the value of the shift. These shift values are computed in the
preprocessing stage for all the characters in the alphabet set. Hence, the algorithm is

14 K. Prabha and Dr. S. Sukumaran

more efficient in practical situations where the alphabet size is large and the length of
the pattern is small.

The Quick-Search Algorithm (QS)
Quick search algorithm is the modified version of BoyerMoore algorithm. Like the
Horspool algorithm it uses only one table called “bad-character shift”, and working on
one of two pattern shifting. Quick search algorithm is easy to implement and can
apply on short and large patterns giving very fast results [14].
The Quick-search algorithm uses the Quick-search bad-character (qsBc) shift table,
generated during the preprocessing stage. The shift value for a character in the qsBc
table is defined as its corresponding position in the pattern from right to left order. If
the character is not present in the pattern, then the shift value is equal to m+1. After
an attempt, when the window is positioned on y[j.. j+m-1], the length of the shift is at
least equal to one. Therefore, the character y[j+m] is necessarily involved in the next
attempt and is used for the bad-character shift of the current attempt. During each
attempt of the searching phase, the comparisons between the pattern and the text
characters can be performed in any order.

Brute Force Algorithm (BF)
The most basic method of approaching the problem of pattern matching is the Brute
Force (BF) algorithm. This technique is very simple and easy to follow. Let’s assume
we have text (input) T with length n and a pattern (keyword) P with size m. The
algorithm begins by comparing the pattern to the text, scanning left to right, one
character at a time, until there are no more matching characters. If a mismatch occurs,
the algorithms shift the pattern one character to the right. The algorithm is given
below,
Algorithm Brute Force (text, pattern)
{
n=length(text) // n is length of text
m=length(pattern) // m is length of pattern
for i=0 to (n-m)
{
j=0
while (j<m) and
(text(i+j)=pattern(j)))
j++
if j=m
return i // match at i
}
return –l // no match
}
Karp-Rabin Algorithm (KR)
The Karp-Rabin Algorithm was created by Michael Rabin and Richard Karp. The
main idea is that instead of using comparisons it involves mathematical computations
which more specifically extends to the notion of hashing. The application of hashing

Single-Keyword Pattern Matching Algorithms for Network Intrusion Detection System 15

(converting each string into a numeric value) has always been a useful approach when
it comes down to string matching because we can use it in order to test if two strings
are the same. If both words have different hash values then we can be certain they are
different [12]. But if their hash values are the same we cannot conclude they are the
same string and will have to perform further comparisons (usually via Brute Force).
Algorithm Karp-Rabin(T,P,d,q)
n=length (T)
m=length (P)
h=dm-1 mod q
p=0
t0=0
for i=1 to m //preprocessing
{

p=(d*p + P[i]) mod q //checksum of P
t0=(d*t0 + T[i]) mod q //checksum of T[1…m]
}
for s=0 to n-m //matching
{
if p=ts

if P[1..m]=T[s+1..s+m]// Checksums match.
print “Pattern occurs with shift” s
if s < n-m
ts+1=(d*(ts-T[s+1]*h) + T[s+m+1]) mod q
}

Knuth-Morris-Prath Algorithm (KMP)
This algorithm was introduced by Don Knuth, Jim Morris, and Vaughan Pratt. It is
quite similar to the Brute Force approach regarding scanning the text left to right,
however we are now using information from the previously compared characters in
order to determine the maximum possible shift of the pattern to the right. The idea is
to avoid comparisons with elements from the text T that have previously been
compared with some elements of the pattern P. In order to achieve this task, KMP
preprocesses the pattern to find matches of prefixes of the pattern with the pattern
itself. The pre-calculation is done in time O(m) and is called the next function F[j]
[16]. This function is an array that represents the size of the largest prefix of P[0…j]
which is also a suffix of P[1…j]. The KMP algorithm states that the most we can shift
the pattern in order to avoid redundant comparisons is namely the length of the next
function.

Algorithm KMP (T, P)
F=nextFunction (P)
i=0

16 K. Prabha and Dr. S. Sukumaran

j=0
while i < n
{
if T[i]=P[j]
if j=m-1
return i–j //match
else
i++
j++
else
if j > 0
j=F[j-1]
else
i++
}
return -1 // no match
Void next Function (P)
F[0]=0
i=1
j=0
while i < m
{
if P[i] == P[j]
F[i]=j + 1
i++
j++
else if j > 0 then
j=F[j-1]
else
F[i]=0 //no match,
i++
}
Conclusion
Nowadays the network applications increased rapidly through Internet. Hence, there is
a need to detect the malicious packets such as virus and worm in the network to
support these applications. So the NIDS are deployed in the networks to detect these
malicious activities.
 This survey identifies a number of promising algorithms and provides an
overview of recent developments in the single keyword string matching for NIDS.
Algorithms like BM has two tables and matching starts with right to left, but in HP

Single-Keyword Pattern Matching Algorithms for Network Intrusion Detection System 17

and QS algorithms are used only one table and the matching is faster than the BM. In
BF algorithm compared with the above three algorithms it is very simple and easy, the
matching starts with left to right. Boyer-Moore algorithm is one of the efficient
algorithms compared to the other algorithms available in the literature.

References

[1] Anagnostakis K G, Markatos E P, Antonatos S, Polychronakis M, “A domain-

specific string matching algorithm for intrusion detection”, Proceedings of the
18th IFIP International Information Security Conference (SEC2003). Athens,
Greece: Kluwer Acadamic Pubhishers, 2003.

[2] Bi Kun., Gu. Nai-jie., Tu Kun., Liu. Xiao-hu. and Liu. Gang, “A Practical
Distributed String Matching Algorithm Architecture and Implementation”,
Proceeding of world academy of science, engineering and technology, 2005.

[3] B. Watson, “The performance of single-keyword and multiple-keyword pattern
matching algorithms”, Eindhoven University of Technology. Department of
Mathematics and Computing Science. 1994.

[4] Coit C J, Staniford S, McAlerney J, “Towards faster string matching for
intrusion detection or exceeding the speed of Snort”, Proceedings of the
DARPA Information Survivability Conference and Exposition II
(DISCEX’01). Los Alamitos, CA, USA: IEEE Comput. Soc., 2001

[5] D. M. Sunday, “A very fast substring search algorithm”, Communications of
the Association for Computing Machinery, 1990.

[6] Fisk M, Varghese G, “An analysis of fast string matching applied to content-
based forwarding and intrusion detection”, Technical Report CS2001-0670.
San Diego: University of California, 2002.

[7] Gaston Gonnet and Ricardo Baeza-Yates, “An analysis of the Karp-Rabin
string matching algorithm”, Data Structuring Group. Department of Computer
Science. University of Waterloo. May 1989.

[8] Nathan Tuck, Timothy Sherwood, Brad Calder, George Varghese,
“Deterministic Memory-Efficient String Matching Algorithms for Intrusion
Detection”. Department of Computer Science and Engineering, University of
California, San Diego. Department of Computer Science, University of
California, Santa Barbara. 2004.

[9] Nilsen G, Torresen J, Sorasen O, “A variable word-width content addressable
memory for fast string matching”, Proceedings of the 22nd Norchip
Conference. Osio, Norway: IEEE, 2004.

[10] Norton M, Roelker D,“The new Snort”, Computer SecurityJournal, 2003.
[11] Oddiraju, Sriharsha. “Boyer Moore”. Computer Science Department. Indiana

State University. December 2011.
[12] Plaxton, Greg, “String Matching: Rabin-Karp Algorithm”, Theory in

Programming Practice. University of Austin, Texas. Fall 2005.

18 K. Prabha and Dr. S. Sukumaran

[13] P. S. Wheeler, “Techniques for improving the performance of signature based
intrusion detection systems,” Master’s thesis, University of California Davis,
2006.

[14] Qingzhang CHEN, Yibo NIU, Zhehu WANG, Feng DU, “Improved BM
Pattern Matching Algorithm for Intrusion Detection”, 2010 Third International
Joint Conference on Computational Science and Optimization. 2010.

[15] R.N. Horspool, “Practical fast searching in strings”, Software-Practiceand
Experience, Vol. 10, no. 6, 1980.

[16] Roesch M,“Snort: Lightweight intrusion detection for networks”, Proceedings
of the 13th System Administration Conference.

[17] R.S. Boyer and J.S.Moore,“A fast string searching algorithm”,
Communications of the Association for Computing Machinery (ACM),Vol. 20,
no. 10, 1977.

[18] Wu S, Manber U, “A fast algorithm for multi-pattern searching”,Technical
Report TR-94-17, University of Arizona, 1994.

[19] Yuehui Chen, Abraham, Ajith and Crina Grosan, “Evolution of Intrusion
Detection Systems”, School of Computer Science and Engineering, Chung-Ang
University, Korea. 2005.

