
International Journal of Computer and Internet Security.
ISSN 0974-2247 Volume 4, Number 2 (2012), pp. 43-50
© International Research Publication House
http://www.irphouse.com

Keypad Based Security for Networking Devices to
Regain Control over Meta Data

1M.Vijaya Bhaskar Rao, 2M.Arjun Goud
and 3Prof.V.Purnachandra Rao

1Kakatiya University Andhra Pradesh, India

2Lecturer, Satavahana University, Karimnagar Andhra Pradesh, India
3Professor,TKR Institute of Technology and Science Andhra Pradesh, India

E-mail: arjun.muthyala2000@gmail.com

Abstract

This paper discusses about Keypad, an auditing file system for theft-prone
devices, such as laptops, tablets, and USB sticks. While emerging computing
technologies such as cloud computing and small, powerful, mobile devices
offer previously global access to data and applications, they also threaten
user’s control over data ownership, distribution, and properties. This paper
examines the broad data security, and management challenges raised by
keypad technology and proposed a set of techniques to address these issues.
Key pad offers remote access control and auditability for data stored on a
stolen devices. Firstly we presented detailed description about keypad
architecture and implemented a prototype for keypad. Secondly we discussed
about the key pad technology performance and finally the security analysis for
keypad technology is discussed.

Keywords: Mobile Devices, Keypad, Keys, Encryption, Security, File system,
Information

Introduction
The mobile devices, such as laptops, tablets, and USB memory sticks, create not only
great advantages but also significant risks due to their susceptibility to theft and loss.
The loss of such devices is most concerning for organizations and individuals storing
confidential information, such as medical records, social security numbers (SSNs),
and banking information. Conventional wisdom suggests that standard encryption
systems, such as Bit Locker [1], PGP Whole Disk Encryption [2], and True Crypt [3],
can protect confidential information. However, encryption alone is sometimes

56 M.Vijaya Bhaskar Rao et al

insufficient to meet users’ needs. Two reasons are relevant for this discussion. First,
traditional encryption systems can and do fail in the world of real users. Users find it
difficult to create, remember, and manage passphrases or keys. As an example, a
password-protected USB stick containing private medical information about prison
inmates was lost along with a sticky note revealing its password [4]. Encrypted file
systems often rely on a locally stored key that is protected by a user’s passphrase.
User passphrases are known to be insecure; a recent study of consumer Web
passwords found the most common one to be “123456” [5]. Finally, in the hands of a
motivated data thief, devices are open to physical attacks on memory or cold-boot
attacks [6] to retrieve passphrases or keys.
 This paper presents the design, implementation, and evaluation of Keypad, a file
system for loss and theft prone mobile devices that addresses these concerns. The
principal goal of Keypad is to provide explicit evidence that protected data in a lost
device either has or has not been exposed after loss. Specifically, someone who
obtains a lost or stolen Keypad device cannot read or write files on the device without
triggering the creation of access log entries on a remote server. This property holds
even if the person finding the device also finds a note with the device’s encryption
password.
 Keypad’s forensic logs are detailed and fine grained. For example, a curious
individual who finds a laptop at the coffee shop and seeks to learn its owner might
register audit records for files in the home directory, but not for unaccessed
confidential medical records also stored on the device. However, the professional data
thief will register accesses to all of the specific confidential medical files that they
view. Furthermore, Keypad lets device owners disable access to files on the mobile
devices once they realize their devices have been lost or stolen, even if the devices
have no network connectivity, such as USB memory sticks (in contrast to systems like
Apple’s MobileMe).
 Keypad’s basic technique is simple yet powerful: it tightly entangles the process
of file Access with logging on a remote auditing server. To do this, Keypad encrypts
protected files with file specific keys whose corresponding decryption keys are located
on the server. Users never learn Keypad’s decryption keys and thus they cannot
choose weak passwords or accidental reveal them; it is therefore computationally
infeasible for an attacker to decrypt a file without leaving evidence in the log. When a
file operation is invoked, Keypad logs the file operation remotely, temporarily
downloads the key to access the file, and securely erases it shortly thereafter. Keypad
is implemented on top of a traditional encrypted file system; obviously users should
choose strong passwords (or use secure tokens, etc.) for that underlying file system,
but Keypad provides a robust forensic trail of files accessed even if users choose weak
passwords or traditional system’s keys are otherwise compromised.

Keypad Architecture
Keypad augments encrypted file systems with two properties: auditability and remote
data control. The basic idea is simple yet powerful. Keypad: (1) encrypts each file
with its own symmetric key, (2) stores all keys on a remote audit service, (3)

Keypad Based Security for Networking Devices to Regain Control 57

downloads the key for a file each time it is accessed, and (4) destroys the key
immediately after use. This approach supports our auditability and remote data control
goals. By configuring the audit service to log all storage accesses, we obtain fine-
grained auditability; by disabling all keys associated with a stolen device on the
service, we prevent further data access.
 Despite its simplicity, designing a practical file system to achieve our goals poses
three challenges. First is performance: each file access requires a blocking network
request, which could harm application performance and responsiveness over high
latency cellular networks. Second is disconnection: involving the network on all file
accesses prohibits file use during network unavailability. While we treat this as an
exception, we still wish to support disconnected operation. Third is metadata: an
auditor requires user-friendly, up-to-date metadata for each key to interpret access
logs appropriately. As will be shown, efficiently maintaining metadata is complex, but
possible. This section shows how Keypad’s design addresses these three challenges.

Architectural Overview
Figure 1 shows Keypad’s architecture. On the client device, each file F has a unique
identifier (called the audit ID – IDF) stored in its header, and the file’s data is
encrypted with a unique symmetric key, KF. A remote key service maintains the
mappings between audit IDs and keys. When an application wants to read or write a
file, Keypad looks up the file’s audit ID in its header and requests the associated key
from the service. Before responding to the request, the service durably logs the
requested ID and a timestamp. This process ensures that after Tnotice, the user will be
able to identify all compromised audit IDs for which there is a log entry after Tloss.
 In addition to the key service, Keypad contains a metadata service that maintains
information needed by users to interpret the logs. The information (called file
metadata) includes a file’s path the process that created it, and the file’s extended
attributes. The metadata and key services fulfill conceptually independent functions;
they could be run by a single provider or by distinct providers

Figure 1: The Keypad System Architecture. Each file is encrypted with its own
random symmetric key. Keys are stored remotely on a key service. To enable
forensics, a meta data service stores file metadata

58 M.Vijaya Bhaskar Rao et al

 Using distinct providers helps to mitigate privacy concerns that could arise if a
single party tracked all file access information. The key service sees only accesses to
opaque IDs and keys, while the metadata service learns the file system’s structure, but
not the access patterns. Thus, privacy concerned users can avoid exposing full audit
information to any audit service by using different key and metadata providers.

Prototype Implementation
We implemented a Keypad prototype including the client-side Keypad filesystem, the
key service, and the metadata service as shown in Figure 2. All components are coded
in C++ and communicate using encrypted XML-RPC with persistent connections.
Our client-side Keypad file system is an extension of EncFS [7], an open-source
block-level encrypted file system based on FUSE [8]. EncFS encrypts all files,
directories, and names under a single volume key, which is stored on disk encrypted
under the user’s password. Keypad extends EncFS in two ways. First, we modified
EncFS to encrypt each file with its own per-file key. The single volume key is still
used, however, to protect file headers and the file system’s namespace, e.g., file and
directory names. Second, Keypad stores all file keys on a remote key server and
maintains up to date metadata on a metadata server. To support forensic analysis we
built a simple Python tool; given a Tloss timestamp and an expiration time, Texp, the
tool reconstructs a full-fidelity audit report of all accesses after Tloss − Texp, including
full path names and access timestamps.

Keypad File Structure: Figure 2(a) shows the internal structure of a Keypad file F,
which consists of two regions: the file’s header and its content. The file’s header is
fixed size and is encrypted using EncFS’ volume key. For the file’s content, our
implementation adds a level of indirection for encryption keys to support techniques
such as IBE efficiently. Specifically, file F’s content is encrypted using a 256-bit
random data key, denoted KFD. The data key is stored in the file’s header encrypted
under the remote key, denoted KFR. The remote key is stored on the key server and is
identified by the file’s audit ID (IDF), which is a randomly generated 192-bit integer
that is stored

Figure 2: Keypad File Formats. Keypad on disk file structure for the normal case (a)
and the IBE locked case (b)in the file’s header along with the encrypted data key. This
internal file structure is transparent to applications, which see only the decrypted
contents of a file.

Keypad Based Security for Networking Devices to Regain Control 59

FS Operations: Keypad intercepts and alters two types of EncFS operations: file-
content operations (read, write) and metadata-update operations (create, rename for
files or directories). When an application accesses file content, Keypad: (1) looks up
the file’s audit ID from its header, (2) retrieves the remote key KFR, either from the
local cache or the key service, (3) decrypts the data key KFD using KFR, (4) caches
KFD temporarily, and (5) decrypts/encrypts the data using KFD .
 When an application creates or updates file metadata, Keypad: (1) locks the data
key using IBE, if enabled, and (2) sends the new metadata to the metadata service.
The metadata is the file’s path reported as a tuple of the form directory ID/filename.
The names of Keypad directories are also kept current on the metadata service. While
our current prototype applies IBE for file metadata update operations (e.g., file create,
rename), it does not apply it to directory metadata operations (e.g., mkdir or directory
rename), although this should be possible to add.

Key Expiration: Keypad caches keys for a limited time for performance. A
background thread purges expired keys from the cache. If a key has been reused
during its expiration period, the thread requests the key from the key service again,
causing an audit record to be appended to the access log for that audit ID. If a
response arrives before the key expires, the key’s expiration time is updated in the
cache, otherwise the key is removed. As a result, absent network failures, keys in
Keypad never expire while in use. This ensures that long-term file accesses, such as
playing a movie, will not exhibit hiccups due to remote-key fetching.

Key Prefetching: Key prefetching attempts to anticipate future file accesses by
requesting file keys before the files are accessed. For our prototype, we sought a
simple policy that would have both reasonable performance and little impact on
auditability. We have experimented with two policies: (1) a random-prefetch scheme
that prefetches random keys from the local directory upon every key cache miss and
(2) a full-directory-prefetch scheme that prefetches all keys in a directory when it
detects that the directory is being scanned by an application. Our experiments
indicated that the latter policy provided equally good performance, while incurring
fewer false positives in the audit logs. Hence, our Keypad prototype uses it by default.
The intuition behind our full-directory prefetch design is to avoid producing false
positives for targeted workloads (such as interacting with a document, viewing a
video, etc.) and to improve performance for scanning workloads (such as grapping
through the files in a directory or copying a directory). Our full-directory-prefetch
scheme avoids recursive prefetches to ensure that any false positives are triggered by
real accesses to (related) files in the same directory. While other more effective
prefetching policies may exist, our results show that our full-directory-prefetch policy,
combined with our caching policies, reduce the number of blocking key requests to a
point where the performance bottleneck shifts from blocking key requests to metadata
requests.

IBE: To avoid blocking for metadata-update requests, our prototype implements IBE-
based metadata registration, using an open-source IBE package [9]. On a metadata-

60 M.Vijaya Bhaskar Rao et al

update operation, Keypad locks the file until the metadata service confirms the receipt
of the new file path; however, file operations can proceed for a one-second window,
as previously described, to absorb network latency. Figure 2(b) shows the structure of
an IBE-locked file. Its encrypted data key is further encrypted using IBE under a
public key consisting of the file’s path (directory ID/filename) and the audit ID (IDF).
Embedding IDF into the public key strongly binds IDF and the path together at the
metadata server. Handling updates for other types of file metadata functions works
similarly, although our current prototype only supports pathnames as metadata. An
attacker cannot pre-obtain private IBE keys for popular file paths from the metadata
server prior to stealing the device, because directory and file IDs are drawn at random
from a gigantic space (2192).

Android Based Paired Device Prototype: We implemented a prototype of the
paired-device architecture using the Google Nexus One phone. A simple daemon (431
lines of Python) on the phone accepts key requests from the laptop over Bluetooth,
saves accesses to a local database, responds to the laptop, and uploads access and
metadata information to Keypad servers in bulk over wireless. It leverages the key
derivation mechanism to easily fetch directory keys upon a key-cache miss. For
example, when the laptop requests a file key, the Nexus will fetch the parent
directory’s key from the key server, cache it, compute the file’s key by applying
HMAC to the directory key, and return the file key to the laptop. Thus, when pairing
with the Nexus, the key server provides directory-level auditing, while the phone
offers fine-grained auditing.

Performance
To understand where the time goes for Keypad operations, we micro benchmarked
file content (read and write) and metadata (create, rename, and mkdir) operations. Our
measurements included client, server, and network latencies, as well as latency
contributions for EncFS and Keypad.

Figure 3: File Operation Latency. the latency of Keypad (a) content and (b) metadata-
update operations. for each, we show the time spent in EncFS code, Keypad client and
server code, and on the network. Labels on the graph show the latency for each
component in the 3G 300ms RTT case. Results are averaged over 10 trials with a
warm disk buffer cache.

Keypad Based Security for Networking Devices to Regain Control 61

 Figure 3 shows the latency of file read and write operations for two cases: key-
cache misses, which must fetch the key from the server, and key-cache hits, which use
a locally cached key. For each case we show data for two extreme networks: a fast
0.1ms-RTT LAN and a slow 300ms-RTT 3G network. The results show that misses
are expensive on both networks, but for different reasons. On a LAN, the network is
insignificant, but Keypad adds to the base EncFS time due to the XML- RPC
marshalling overhead. On 3G, network latency dominates. When the key-cache hits,
both the network and marshalling costs are eliminated; a file read with a cached key is
only 0.01ms slower than the base EncFS read time of 0.337ms. This shows the
importance of key caching to avoid misses, which we accomplish by carefully
choosing our expiration and prefetching policies.

Security Analysis
Keypad is designed to provide strong audit guarantees for encrypted file systems if the
first layer of defense, encryption with a password or cryptographic token, is breached.
Keypad can additionally destroy the ability to read files after a mobile device is
reported lost or stolen. Although we evaluated security properties extensively inline
above, we now return for a unified discussion.

Context and Threat Model: We designed Keypad assuming that individuals who
find or steal a mobile device range in sophistication, degree of planning, and interest.
Curious individuals may insert a found USB stick into their computer, enter the
password on the attached sticky note, and browse through a few files trying to find the
device owner. Petty thieves may grab laptops opportunistically but have no real
interest in accessing confidential files. Corporate spies may plan and execute device
theft carefully, with the goal of accessing confidential files before the victim reports
the device missing. We refer to all such individuals as “attackers.”

Analysis: We begin with the premise that the audit servers are trusted and secure. The
key and metadata servers are trusted to maintain accurate logs, and they are assumed
to incorporate strong defenses to adversarial comprise, routinely back up their state,
and have their own audit mechanisms. Neither the key server nor the metadata server
is, however, fully trusted with the private information about a user’s file access
patterns prior to Tloss; accessing that information requires collusion between both
servers or the device owner’s invocation of the Keypad post-loss audit mechanisms.
 The unavailability of servers can deny access to files; for highly sensitive data, we
argue that users would prefer unavailability over the potential for unaudited future file
disclosure. Further, although not implemented in our prototype, the communications
between the Keypad file system and the servers should be encrypted to ward off
attackers who intercept network communications prior to device theft. The keys must
change every Texpseconds to ensure that an attacker who extracts the current network
encryption key from the device cannot decrypt past intercepted data.

62 M.Vijaya Bhaskar Rao et al

Conclusion
This paper described Keypad, an auditing file system for loss and theft prone devices.
Unlike basic disk encryption, Keypad provides users with evidence that sensitive data
either was or wasnot accessed following the disappearance of a device. If data was
accessed, Keypad gives the user an audit log showing which directories and files were
touched. It also allows users to disable file access on lost devices, even if the device
has been disconnected from the network or its disk has been removed. Keypad
achieves its goals through the integration of encryption, remote key management, and
auditing. Our measurements demonstrate that Keypad is usable and effective for
common workloads on today’s mobile devices and networks.

References

[1] Microsoft Bit Locker. Windows 7 Bit Locker Executive
Overview.http://technet. microsoft.com/en-
us/library/dd548341%28WS.10%29.aspx, 2009.

[2] PGP Corporation. PGP whole disk encryption. http://www.pgp.com/products/
wholediskencryption/, 2008.

[3] T. Foundation. True crypt – free open-source on-the-fly encryption.
http://www. truecrypt.org/, 2007

[4] M. Savage. NHS ‘loses’ thousand of medical records. http://www.independent.co.uk,
2009

[5] Imperva. Consumer password worst practices. http://www.imperva.com/docs/
WP_Consumer_Password_Worst_Practices.pdf, 2010.

[6] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we
remember: Cold boot attacks on encryption keys. In Proceedings of the
USENIX Security Symposium, 2008.

[7] EncFS. http://www.arg0.net/encfs.
[8] FUSE: File system in User space. http://fuse.sourceforge.net/.
[9] PBC. http://crypto.stanford.edu/pbc/.

