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Abstract

Geochemical studies of shale samples from Barail Group occurring in and
around Mandardisa, North Cachar hills, Assam have been carried out The
major, minor and trace elements present in the shale samples show significant
results in determining provenance and source rock composition, tectonic
setting, palaeoweathering, chemical maturity and palaeoclimate. The different
bivariate plots suggest their derivation from felsic source rock of granitic
dominated upper continental crust. In the CaO-K20-Na20 ternary plot of the
shale samples fal in active continental margin. The CIA vaues indicate
moderate to high degree of chemical weathering. The shales of the studied
area show increasing chemical maturity under humid climatic condition.
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Introduction

Shales are considered to represent the average crustal composition and the provenance
in a much better way than sandstones (McCulloch and Wasserburg, 1978), because of
the homogeneous nature and post-depositional low permeability. Geochemistries of
shales are best suited for provenance studies. Major and trace element geochemistry
of shales has been proved useful in provenance and palaeoenvironment studies of
many sedimentary basins (eg., Cullers, 2000; Bhat and Ghosh, 2001; Lee, 2002;
Hofmann et. a., 2003). Immobile elements such as Al, Ti and Zr are particularly
helpful for estimating the nature of source rock (Taylor and McLennan, 1985).
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Tectonic setting of sedimentary basinsis based on relative variation of magjor e ements
within shales (Roser and Korsch, 1986; Zhang et. al., 1998; and many others). Major
element analysis is equaly applicable in understanding paleoweathering and
paleotectonic setting (Taylor and McLennan, 1985; Hayashi et. al., 1997; Neshitt,
2003). Hence many studies have used the major, minor and trace elements
geochemistry as a tool to characterize source rock weathering, provenance and
tectonic setting from the terrigenous sediments of India (Das, et. al., 2006; Dey et. a.,
2009; Nagargjan et. al., 2007; Ranjan and Banerjee, 2009)

The relative distribution of the immobile elements that differ in concentration in
felsic and basic rocks, has been used to infer the relative contribution of felsic and
basic sources in shales from different tectonic environments (Wronkijewicz and
Condie, 1989). It has been observed that the ration of Ti and Al can effectively be
used as an index of provenance, since they behave as immobile phases because of
their low solubility and similar behaviour during weathering (McLennan et. a., 1979).

Geology of the Area

The Tertiary sedimentary rocks are well exposed in and around Mandardisa of North
Cachar Hills, Assam. The areais covered by the survey of India toposheet no. 83G/2
and lies between the longitude 93°05/- 93°10/E and latitude 25°40/- 25°45/N. (Fig.1)
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Figure 1: location map of the study area.
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The sedimentary rocks exposed in the area dominantly composed of sandstones
with siltstone and shale which represent the Barail Group of rocks. As the area is
geologically virgin, no detail lithology of the rocks is found elsewhere. However,
after field observations, the following stratigraphic succession has been made along
with salient lithological characters.

Stratigraphic succession of the study area (Table - 1)

Age Group Lithology
Pleistocene Newer and older alluvium
to Recent
-------------------- Unconformity ---------------
Miocene Surma Alternates of laminated micaceous
(Bokabil) sandstones with a conglomerate bed
-------------------- Unconformity ---------------
Oligocene  Barail Grey, medium to fine-grained,

ferruginous, massive and bedded,
occasionally laminated sandstones with
siltstone and shale layers.

Geochemical Analysis
Geochemica analysis of shales from Barail Group mainly includes major and minor
element oxides and trace elements.

Analytical Note

16 representative shale samples were analysed for magjor, minor and trace el ements.
The shale samples were analysed in the department of Instrumentation and USIC by
XRFS method. The maor, minor elements (oxides) and trace elements have been
studied for chemical analysis.

Major and minor elements oxides

The percentage of mgjor and minor element oxides of shale samples of studied area
includes SI02, Al203, Fe203, Na20, K20, Cao, MgO, TiO2, MnO and P205. These
are shown in Table 1. These oxides are used for determination of source rock
composition, tectonic setting, palaeoweathering environment, chemical maturity and
palaeoclimate.

Trace elements

The trace element concentrations in sediments result from the influence of
provenance, weathering, diagenesis etc. Trace elements are important for various
applications. Certain trace elements because of their relatively low mobility have been
used to distinguish depositional environment, source rock composition and tectonic
setting. The different trace elements present in shale samples are shown in Table 2.
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Immobile trace elements of Cr, Ni, V and Sc concentration suggest the felsic source
rock. The presence of V and Cr indicates an oxic depositional condition (Jones and
Manning, 1994). The sufficient amount of Co, Cr, Ni and Zn in the shales suggests
that these elements were derived from ferromagnesian minerals of metamorphic rocks

(Raghuwanshi, 2007).

The overadl trace elements present in the shale samples of studied area indicate

unstabl e tectonic setting.

Table 2. XRFS Chemica analysis data of maor and minor element oxides. (All
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values in wt%o)

sl Sp

No No

1 551
2 552
3 SS83
4 554
5 5585
6 556
7 SS87
8 558
9 559
10 S510
1 SS11
12 S512
13 S513
14 5514
15 5515
16 5516

5102

46.59
57.58
57.31
54 .48
64.48
5743
4539
4279
4478
56.54
4552
62.86
44 .30
57.33
4479
56.52

Tio2

0.89
1.14
1.25
0.99
1.27
1.02
113
091
1.19
112
0.79
1.29
1.31
1.28
1.21
1.14

Al203

1263
1477
1512
1343
13.44
1368
1164
11.85
1332
14.70
11.69
1325
11.69
15.10
1333
14.75

Fe203

443
6.07
6.43
6.17
592
558
6.01
513
6.37
6.01
a4
595
5.59
6.44
6.36
6.03

MnO

0.05
013
0.13
0.28
0.16
0.1
013
012
0.15
012
0.05
0.19
0.15
012
0.14
0.13

MgO

0.78
0.69
398
436
215
052
262
0.31
0.94
0.66
0.76
214
263
3.96
0.96
0.67

Ca0

0.64
7.35
779
8.08
0.15
744
826
5.76
768
7.30
0.63
6.14
822
775
77
7.29

Na20

217
227
232
225
2.20
225
229
220
219
221
215
224
227
2.34
221
2.23

K20

1.37
409
416
345
242
363
385
249
3.57
403
1.29
245
3.58
417
3.59
4.02

P205

0.02
017
040
0.19
0.07
012
033
0.08
039
013
0.03
0.09
037
041
040
0.15

Provenance and Sour ce Rock Composition

This type of bivariate plots between AI203/TiO2 and Al203 is used widely
provenance indicator for many sedimentary terrains (McLennan et. a., 1979;
Schieber, 1992). Most of the plots suggest granite (felsic) source rock for the shales.

(Fig2).
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Figure 2: Al203/TiO2 vs Al203 plot (After Schieber, 1992)
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The bivariate plots between Al203 and TiO2 for the shales indicates the source
into two categories based on relative contribution of granitic and basaltic provenance.

Moreover, Zr is one of the most immobile phases amongst the trace elements and
it is considered as useful tracer for source rock composition (Hayashi et. a, 1997).
Since both Zr and Ti behave as immobile phases in the weathering profile,
transportation and deposition. Hence, ratio of the two elements can be used for a
valuable indicator of the source rock. (Hayashi et. al, 1997) Therefore, abundance of
these two elements faithfully reflect the composition of the source rocks. Zirconium
content of the Barail shale samples from 146 to 267 ppm, which is similar to the
average value for granite.

The bivariate plot of AI203 vs TiO2 (After McLennan et. al, 1979) indicates the
acidic and basic igneous source rocks (Fig.3) and the TiO2 versus Zr plot (Fig.4)
represents predominantly felsic source rock for Barail shales.
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Figure 3: Al203 vs TiO2 bivariate plot (After McLennan et. al, 1979)
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Figure 4: TiO2 vs Zr plot for the Barail shales. (After Hayashi et. al., 1997)
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Tectonic Setting

The K20 vs Na2 (Crook, 1974), K20/Na20 vs SiO2 plot (Roser and Korch, 1986)
and Ca0-K20-Na20 ternary plot (Bhatia, 1983) may be used to determine the
tectonic setting of shales.

The K20/Na20 ratio varies distinctly for different tectonic environments with
respect to the SIO2 content. Roser and Korch (1986) demonstrated three different
tectonic setting of sedimentary basins i.e.,, passive margin or intracratonic, active
continental margin and oceanic island arc margin, based on a bivariate plot between
SiI02 and K20/Na20. The method has been applied to shale samples for the
depositiona basin of the area.. The study suggests tectonically active setting for the
basin. (Active continental margin) (Fig.5)
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Figure 5: Tectonic discrimination diagram (Roser and Korsch, 1986)

The K20 vs Na20 plots of Barail shales fall in quartz rich field of Crook (1974)
(Fig.6). McLennan et. al (1993) also observed same result from this type of study and
suggested the derivation fo shales from a granite dominated upper continental crust.
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Figure 6: K20 - Na20 diagram (After Crook, 1974)

Palaeoweathering Environment

The rate of chemical weathering of source rocks and the erosion rate of weathering
profiles are controlled by climate as well as source rock composition and tectonics.
An useful way to interpret the Palacoweathering of the rock is chemical index of
ateration (CIA) = (Al203/ Al203+Ca0+Na20+K20)x100 (Neshitt and Young,
1982).

CIA values range from amost 50 in case of fresh rocks to 100 for weathered
rocks. CIA values thus increase with increasing weathering intensity. CIA values for
shales vary between 65 and 75 (Taylor and McLennan, 1985; Young and Neshitt,
1988). The range of values suggests moderate to high degree of chemica weathering
in the source area. The present CIA values of shale samples are shown in Table-3.

Table 3: Trace element (All valuesin ppm)

Sl Sample Lab. Ba Co Cr Cu Ga Ni Pb Rb Sc Ti u v Y n  Ir
MNo.  No. No.

1 551 2662 T2 < 10 < 2 < 39 35 18 5 3 145 17 894 146
2 582 2563 1030 < 20 < 6 < 28 108 < 35 3 80 26 424 155
3 553 2654 520 < 43 < 5 < 39 99 < 39 3 185 26 472 169
4 554 2655 966 < 17 < 4 < 25 84 < 37 3 70 26 454 192
5 §55 2656 829 < 19 < 3 < 26 53 9 14 4 88 18 197 267
6 556 2657 1043 < 38 < 6 < 32 100 < 36 4 134 25 450 163
7 SS57 2658 808 < 44 < 5 < 38 92 < 40 4 1585 25 476 164
8 558 2659 894 < 36 < 5 < 29 87 < 36 5 121 23 428 148
9 559 2660 759 < 29 < 5 < 34 75 < 50 3 162 26 444 165
10 5510 2661 864 < 24 < 2 < 26 61 9 35 4 180 26 890 234
11 S8S11 2662 935 < 28 < 4 < 28 53 11 31 2 185 26 426 323
12 S512 2663 759 < 29 < 5 < 34 36 < 50 3 85 22 402 252
13  S513 2664 1006 < 23 < 5 < 28 65 < 35 3 163 24 444 157
14 S514 2665 1050 < k) < 6 < 27 1G] 13 39 2 159 27 484 264
15 5515 2666 1045 < T8 < 6 < 40 75 < 51 3 106 26 624 206
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Table 4: Showing CIA values of shale-samples

Sp. No. Values
SS51 75.13
552 55.86
553 59.45
S84 55.36
S55 73.81
556 59.67
S57 55.70
558 65.41
889 55.48
5510 66.95
SS811 7418
5512 66.76
S513 55.38
5514 60.70
S515 5692
5516 60.12

Weathering can be evaluated by plotting the CIA values in A-CN-K where A
stands for Al202, CN stands for CaO+Na20 and K stands for K20. The solid line
represents the predicted weathering path for the samples of granitic composition.
(Fig.7) Moderate to high weathering of the source rock is shown by the CIA values.
The weathering conditions is thus a reflection of tectonic instability of the basin and
relatively humid climatic condition. A-CN-K plot interpretation is also supported by
TiO2/AI203 ratio that indicates granitic (Felsic composition) of the source rock.
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Figure7: A-CN-K plot (After Neshitt, 2003)

The diagnotic plot of Na vs Mg concentration of shale fall in the field of a marine
to shallow marine depositiona environment (Nicholson, 1992). (Fig.8)
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Figure 8: Mg vs Nadiagnostic plot (After Nicholson, 1992)

The Al-Si discrimination diagram of the shale (Choi and Hariya, 1992) decipher
the hydrogenous origin. (Fig.9)

0 2 4 6 8 10
50 . ' - y ' ' . — 50
1 // 1
40 - HYDROTHERMAL / - 40
30 A " - 30
8 -
=
— 204 Rl 420
w
HYDROGENOQUS
10 -4 10
0 ¥ T T - T T — 0
0 2 4 6 8 10
Al (wt%)

Figure9: Al-Si discrimination diagram (After Choi and Hariya, 1992)

Chemical Maturity and Palaeoclimate
Chemical Maturity Index (CMI) of clastic sediments can be expressed as Si02% and
SiO2/A1203 ratio defining chemical maturity (Pettijhon et. al., 1972).
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The shales show comparatively higher SIO2/AI203 ratio. The plot of SIO2 against
Al203+K20+Na20 against SIO2 in the Suttner and Dutta (1986) binary diagram
(Fig.10) suggest increasing chemical maturity.

ARID

+Na

Figure 10: Scatter Plot of Al203 + K20 + Na20 vs SiO2 (After Suttner and Duitta,
1986)

Major elemental data provides useful information regarding the climatic
conditions which prevailed during the deposition of sedimentary rocks (Suttner and
Dutta, 1986). The bivariate plots of AI203+K20+Na20 against SIO2 differentiate the
climate conditions under which the sediments were deposited (Fig.10).

The plots of Al203+K20+Na20 against SiO2 in the Suttner and Dutta (1986)
binary diagram suggest mostly humid climatic condition.

Conclusions

The major, minor and trace-elements of the shale samples of the Barail Group show
significant results in determining provenance and source rock composition, tectonic
setting, palaeoweathering environment, chemical maturity and palaeoclimate.

1. The bivariate plots of Al203/TiO2 and Al203 suggest granite (felsic) source
rock for the shales. The bivariate plots between Al203 and TiO3 for the shales
indicate the source into two categories based on relative contribution of
granitic and basaltic provenance. The TiO2 vs Zr plot represents felsic source
rock for the shales.

2. For tectonic setting of shales, K20 vs Na20 plots of Barail shales fall in
quartz rich field of Crook. K20O/Na20 ratio of these shales suggest their
derivation from a granitic dominated upper continental crust.

3. CIA vauesfor shales vary from 65 to 75. The values suggest moderate to high
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4.

5.

degree of chemical weathering in the source area. A-CN-K plot suggests
granitic composition of the source rock.

The diagnostic plot of Na vs Mg concentration of shaes fals in the field of
marine to shallow marine depositional environment and Al-Si  discrimination
diagram deciphers the hydrogenous origin of the shale.

The shales show increasing chemical maturity under humid climatic condition.
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