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Abstract 

In this paper we present a procedure to share secret key in a publickey 
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1. INTRODUCTION 

The fundamental objective of cryptography is to enable two people, usually referred as 

Alice and Bob, to communicate over an insecure channel in such a way that an opponent 

cannot understand what is being said. There are two keys involved - Public key and 

Private key. Compemporary publlic key cryptography relies mainly on two different 

computational problems, the factorization of integers and the discrete logarithm in 

groups. Rosenthal and his team suggested a first protocol for a key exchange using 

semigroup action, as a generalization of the exponentiation in groups. In their paper, 

M.Sundar, P.Victor and M.Chandramouleeswaran [4] presented a generalization of 

Diffie-Hellmann key exchange protocol. They constructed semiring action on a finite 

left-semimodule over a semiring. 

In this paper, I give Elgamol Encryption scheme based on that generalization of  

Diffie-Hellmann key exchange protocol. 

 

2. PRELIMINARIES 

In this section we recall some basic definitions of cryptography and semirings that are 

needed for our work. 

Definition 2.1. Let A denotes a finite set called alphabet of definition and M denotes 
the set called the message space which consists of strings of symbols from alphabet of 
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definition. An element of M is called a plain text message. 
Let C denotes a set called ciphertext space. It consisits of strings of symbols from the 
alphabet of definition which may differ from the alphabet of definition of M. An element 
of C is called a ciphertext. 
Let K denotes the key space and whose elements are called keys. 
A key specifies the transformation of plaintext into ciphertext, and vice versa. We can 
classify the key into two types- one is a publickey and the other is a private key. Public 
key is made available to everyone through publicly accessible directory and the private 
key must remain confidential to its respective owner. 

 

Definition 2.2. A one-to-one function f from a set M to a set C is called one-way if it is 
easy to compute f(m) for all m ∈ M,but for a randomly selected c ∈ C,finding an m ∈ 

M such that c = f(m)is computationally infeasible. In otherwords, we can easily compute 
f,but it is computationally infeasible to compute f −1. 

 

Definition 2.3. An Encryption function ek is a mapping from M to C and a Decryption 
function dk is a mapping from C to M such that dk(ek(x)) = x, for every x ∈ M. Let E 
denote the set of all encryption functions from M to C and D, the set of all decryption 
function from C to M. 

 

Definition 2.4. A cryptosystem is defined as a five-tuple (M,C,K,E,D) where M,C,K,E,D 
are mentioned above. 
There are two types of cryptosystems based on the manner in which 
encryptiondecryption is carried out in the system.  

(i) Symmetric key cryptosystem 

(ii)  Asymmetric or Publickey cryptosystem 

The former one is the encryption process where same keys are used for encryption and 
decryption. But in the Publickey cryptosystem different keys are used for encryption 
and decryption 

 

Definition 2.5. A semiring is a non-empty set S together with two binary operations + 

and · such that 
(1) (S,+) is a commutative monoid with identity element 0. 
(2) (S, •) is a semigroup. 
(3) Multiplication distributes over addition from either sides. 

(4) 0r = 0 = r0,∀r ∈ S. 
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Definition 2.6. A zero of a semiring S is an element 000 such that a+0 = 0+a = a  
and a.0 = 0.a = 0, for all a ∈ S.A one of the semiring S is an element 010 such that 
a.1 = 1.a = a, for all a ∈ S. 

 

Definition 2.7. A left-ideal I of S is a non-empty subset of S satisfying the following 
conditions: 

(1) If a,b ∈ I,then a + b ∈ I, 

(2) If a ∈ I,r ∈ S then ra ∈ S, (3) 1 ∈/ I. 

 

Definition 2.8. Let S be a semiring. A left S -semimodule is a commutative monoid 
(M,+) with additive identity 0M  for which we have a function S×M → M, denoted by 
(r,m) 7→ rm and called the scalar multiplication, which satisfies the following 
conditions : 
(1) (rr' )m = r(r' m) ; 

; 

; 

(4) r0M = 0M = 0Rm. 
If the semiring S consists of an unity 1 in S then the semimodule M over S satisfies 1 · 

m = m ∀ m ∈ M. 
Analogously we can define right semimodules over S. 

 

Definition 2.9. Let (S,○S) and (T,○T) are semigroups. Amorphism of semigroup is a map 
φ : (S,○s) → (TR,○t) such that 

 
If S,T has 1S and 1T then φ is such that φ(1S) = 1T. 

 

Definition 2.10. A congruence relation on a semiring S is a relation ∼ such that a ∼ b 
implies that ac ∼ bc, cd ∼ cb, a + c ∼ b + c, and c + a ∼ c + b for all possible choice 
of a,b and c. 

 

Definition 2.11. A semiring S is congruence-free or simple, if the only congruence 
relations are S × S and {(a,a) | a ∈ S}. 
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Definition 2.12. (Group Action) Let A = (S,•) be a semigroup and A a semimodule 
over S . Then a left semigroup action of A on M is a map from A × M → M such that 

(1) ex = x 

(2) (ab)x = a(bx), ∀ a,b ∈ A,x ∈ M 

 

Definition 2.13. An element ’a’ of a semiring S is called multiplicatively regular if there 
exists an element ’b’ of S satisfying aba = a.Such an element b is called a generalised 
inverse of a. 
A semiring S is multiplicatively regular if each element of S is multiplicatively regular. 

 

Definition 2.14. An element ’a’ of a left S semimodule M is called additively regular if 
there exists an element ’b’ of M satisfying a+b+a = a. Such an element b is called a 
generalised inverse of a. 
A left S semimodule M is additively regular if each element of M is additively regular. 
 

3. ELGAMAL PUBLICKEY CRYPTOSYSTEM 

(1) Alice chooses a multiplicatively regular semiring S and s ∈ S.She also choose 

an integer a and computes α = sa. She publish her publickey (s,α). 

(2) Bob wishes to send Alice a message m ∈ S.He first obtains her publickey (s,α). 
(3) Bob chooses a random integer b and computes β = sb and µ = mαb. He sends the 

pair (β,µ) to Alice. 

(4) Alice recovers m by computing µβ−a = µs−ab = m(sa)bs−ab = m. 
Let us illustarte this protocol as in the following example. 

 

Example 3.1. Let S = {a,b,c,d,e,f} be a multiplicatively regular semiring with the 

following Cayley tables. 
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Then (S,+,•) is a multiplicatively regular semiring. a and b are generalized inverses of 

each other. Similarly e and f are generalized inverses of each other. c and d are 

generalized self inverses. 

Alice choose s = b ∈ S and a random integer a = 5 and computes α = sa = b5 = a. 
Alice publishes her public key (s,α) = (b,a) 

Now Bob wishes to send Alice a message m = f ∈ S. 
Bob chooses a random integer b = 7and computes β = sb = b7 = bandµ = mαb = fa7 = fa 
= e and sends the pair(β,µ) = (b,e)to Alice. 

Now Alice computesµβ−a = e(b−1)5 = ea5 = eb = f. Thus Alice receives the message  

m = f. 

 

Remark 3.2. ElGamal encryption is closely related to the Diffie-Hellman key 

agreement protocol. Suppose (ga,a) is the key pair generated by party A. Then if a party 

B sends a secret message to A, it sends gb, retaining b secretly. Both the parties can 

compute the Diffie-Hellmann key gab, which is used to disquise the message m. The 

difference is that A’s key a is here a long term secret key in contrast to the short term 

secret kys in the Diffie-Hellmann protocol. 

 

Remark 3.3. In this encryption , the operation m·hb can be 

replaced by any related group operation, say XOR. 

 

4. EXTENDED ELGAMAL CRYPTOSYSTEM 

Let (s,+,•) be a commutative semiring and (M,○) be a multiplicatively regular 

Ssemimodule. Consider the semiring action on a semimodule. The Extended ElGamal 

cryptosystem is the following protocol: 

(1) Alice chooses a ∈ S,x ∈ M and computes α = ax. She publishes her publickey 

(x,α). 

(2) Bob wishes to send Alice a message m ∈ M.He first obtains her publickey (x,α). 

(3) Bob choose a random integer b ∈ S and computes β = bx and γ = (bα) ○m and 

sends the pair (β,γ) to Alice. 

(4) Alice recovers m by computing (αβ)−1 ○ γ = (abx)−1 ○ (bax ○ m) = (abx)−1 ○ (abx 
○ m) = m 
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Example 4.1. Let S = B(5,3) = ({0,1,2,3,4},⊕,⊙) be a commutative semiring with the 

following Cayley tables. 

 

Let M = {0,1,2} be an additively regular left S-semimodule with the following 

operations: 

 

(1) Alice chooses a = 3 ∈ S andx = 1 ∈ M and computes α = ax = 3 · 1 = 1. She 

publishes her publickey (x,α) = (1,1) 

(2) Bob wishes to send Alice a messagem = 2 ∈ M.He first obtain Alice’s publickey 

(1,1). 

(3) Bob choosesb = 4 ∈ S and copmputesβ = bx = 4 · 1 = 1andγ = (α + β) + m = (1 

+ 1) + 2 = 2 and sends the keypair(β,γ) = (1,2) to Alice. 

(4) Alice recovers m by computing −(α+β)+γ = −(1+1)+2 = −0+2 = 2. 
 

5. CONCLUSION 

The ElGamal cryptosystem is based on the discrete logarithm problem. It is 

nondeterministic since the ciphertext depends on both plaintext x and on the random 

number a chosen by Alice. So there will be many ciphertexts encrypted on the same 

plaintext. The cryptosystem described above is more secure whenever the size of the 

semiring and the choice of a is as large as possible. 
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