Edge-Odd Graceful Labeling for Sum of a Path and a Finite Path

A. Solairaju¹, G. Balasubramanian², and B. Ambika³

¹Associate Professor of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamilnadu, India.

²Head & Associate Professor of Mathematics, Government Arts College for men, Krishnagiri, Tamilnadu, India.
³Guset Lecturer in Mathematics, Government Arts College for Women, Krishnagiri – 635 002, India.

Abstract

Choudum and Kishore [1999] found graceful labelling of the union of paths and cycles. Kaneria et. al. [2014b] found that complete bipartite graphs are graceful. Kaneria et. al. [2014c] got graceful labeling for open star of graphs. Liu et.al. [2012] investigated gracefulness of cartesian product of graphs, like as paths, cycles, and stars. A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) \rightarrow {1, 3, ..., 2q-1} so that induced map f+: V(G) \rightarrow {0, 1,2, 3, ..., (2k-1)}defined by f+(x) \equiv $\Sigma f(x, y)$ (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. This article, the Edge-odd gracefulness of Pm + Pn for m = 2, 3, 4, 5, and 6 is obtained.

Key words: Graceful Graphs, Edge-odd graceful labeling, Edge-odd Graceful Graph

Section 1: Introduction

Barrientos [2005] obtained that unions of cycles and complete bipartite graphs are graceful. Gao [2007] got odd graceful labelings of some union graphs. Hoede and Kuiper [1987] proved that all wheels are graceful. Kaneria et. al. [2014a] showed that some star related graphs are graceful. Mishra and Panigrahi [2005] analyzed graceful lobsters obtained by component moving of diameter four trees. Rahim and Slamin proved that most wheel related graphs are not vertex magic. Seoud and Abdel-Aal [2013] obtained some odd graceful graphs. Sudha and Kanniga [2013] initiated some

gracefulness of some new class of graphs. Vaidya and Lekha [2010] investigated odd graceful labeling of some new graphs. They also [2010] found new families of odd graceful graphs. Vaidya and Shah [2013] got graceful and odd graceful labeling of some graphs. In this paper, the edge-odd graceful labelings of graphs as the sum of a path with n vertices and each path with 2, 3, 4, 5, and 6 vertices.

Section 2: Edge-odd Gracefulness of the graph $P_2 + P_n$

The following definitions are first given.

Definition 2.1: Graceful graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0, 1, 2, ..., m\}$ such that when each edge uv is assigned the label |f(u) - f(v)| and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: $E(G) \rightarrow \{1, 3, ..., 2k-1\}$ so that induced map $f_+: V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ defined by $f_+(x) \equiv \Sigma f(x, y) \pmod{2k}$, where the vertex x is incident with other vertex y and $k = \max \{p, q\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Definition 2.3: $P_2 + N_n$ is a connected graph such that every vertex of P_2 is adjacent to every vertex of null graph N_n together with adjacency in both P_2 and P_n . It has n + 2 vertices and 3n edges.

Theorem 3.4: The connected graph $P_2 + P_n$ is edge – odd graceful.

Proof: The figure 1 is connected graph $P_2 + P_n$ with n + 2 vertices and 3n edges, with some arbitrary labeling to its vertices and edges as follows.

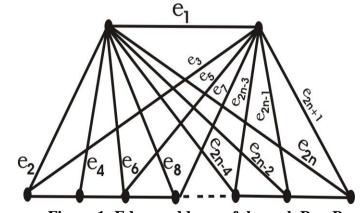


Figure 1: Edge – odd graceful graph $P_2 + P_n$ Define f: E(G) $\rightarrow \{1, 3, ..., 2q-1\}$ by

Case (i). n is odd $f(e_i) = (2i-1)$, for i = 1, 2, ..., (3n)(Rule 1). . . .

Case (ii). n is even and $i \neq 6$ $f(e_i) = (2i-1),$ for i = 1, 2, ..., (2n+1). $f(e_{3n-i}) = f(e_{2n+1}) + 2i + 2$, for i = 0, 1, 2, ..., (n-2).

```
Define f^+: V(G) \to \{0, 1, 2, ..., (2k-1)\} by f^+(v) \equiv \Sigma f(uv) \mod (2k),
where this sum run over all edges through v
                                                                                        (Rule 2).
```

Hence the map f and the induced map f^+ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, \dots, (2q-1)\}$. Hence the graph $P_2 + P_n$ is edge-odd graceful.

Lemma 3.1: The connected graph $P_2 + P_6$ is edge – odd graceful.

Proof: The following graph in figure 2 is a connected graph with 8 vertices and 18 edges with some arbitrary distinct labeling to its vertices and edges.

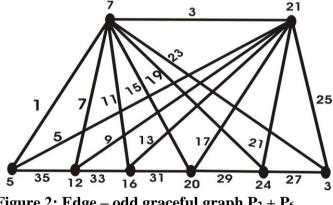


Figure 2: Edge – odd graceful graph $P_2 + P_6$

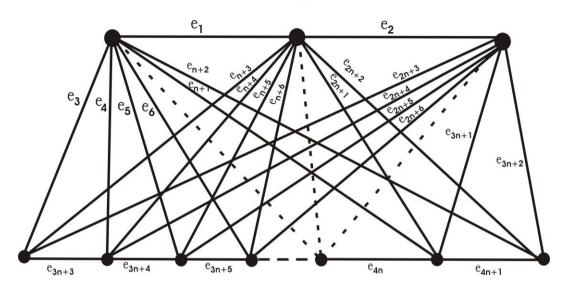
Section 4: Edge-odd gracefulness of the graph P₃ + P_n

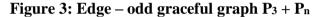
Definition 4.1: $P_3 + N_n$ is a connected graph such that every vertex of K_3 is adjacent to every vertex of null graph N_n together with adjacency in both P_3 and P_n . It has n + 3vertices and 4n+1 edges.

Theorem 4.2: The connected graph $P_3 + P_n$ for n = 1, 2, ..., (4n + 1) is edge – odd graceful.

Proof: The figure 3 is connected graph $P_3 + P_n$ with n + 3 vertices and 4n+1 edges, with some arbitrary labeling to its vertices and edges for case (i).

Case (i): n = 1, 2, ..., (4n + 1) and $n \neq 8, 14, 20, 26, ... (6m + 2)$





Define f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ by **Case (i).** $n \equiv 0 \pmod{6}$ $f(e_i) = (2i-1)$, for i = 3, 4, 5, ..., (4n+1) $f(e_1) = 3$; $f(e_2) = 1$

Case (ii). $n \equiv 1 \pmod{6}$ f(e_i) = (2i-1), for i = 1, 4, 5, 6, ..., (4n+1) f(e_2) = 5; f(e_3) = 3

Case (iii). $n \equiv 3, 5 \pmod{6}$ f(e_i) = (2i-1), for i = 2, 4, 5, 6, ..., (4n+1) f(e₁) = 5; f(e₃) = 1

Case (iii). $n \equiv 4 \pmod{6}$ $f(e_i) = (2i-1)$, for i = 2, 3, ..., (4n) $f(e_1) = 2q - 1$; $f(e_{4n+1}) = 1$

Case (iv): $n \neq 8, 14, 20, 26, ..., (6m + 2), m = 1, 2, ...,$ The figure 4 is connected graph $P_3 + P_n$ with (n + 3) vertices and (4n + 1) edges, with some arbitrary labeling to its vertices and edges for this case (iv).

(Rule 3)

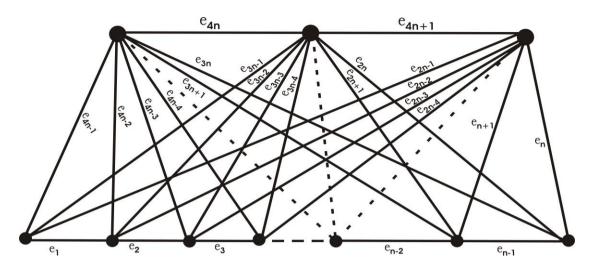


Figure 4: Edge – odd graceful graph P₃ + P_n

Define f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ by $n \equiv 2 \pmod{6}$ $f(e_i) = (2i-1), \text{ for } i = 1, 2, ..., (n-1), (n+1), ..., (3n-1), (3n+1), ..., (4n+1)$ $f(e_n) = 6n - 1; f(e_{3n}) = 2n - 1.$ (Rule 5)

Define f ⁺: V(G) \rightarrow {0, 1, 2, ..., (2q-1)} by

 $f^+(v) \equiv \Sigma f(uv) \mod (2q)$, where this sum run over all edges through v (Rule 6).

Hence the map f and the induced map f ⁺ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2q-1)\}$. Hence the graph $P_3 + P_n$ is edge-odd graceful.

Lemma 4.3: The connected graph $P_3 + P_3$ is edge – odd graceful.

Proof: The following graph in figure 5 is a connected graph with 6 vertices and 13 edges with some arbitrary distinct labeling to its vertices and edges.

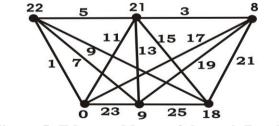
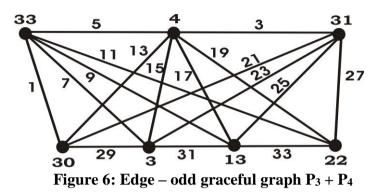


Figure 5: Edge – odd graceful graph P₃ + P₃

Lemma 4.4: The connected graph $P_3 + P_4$ is edge – odd graceful. The following graph in figure 6 is a connected graph with 7 vertices and 17 edges

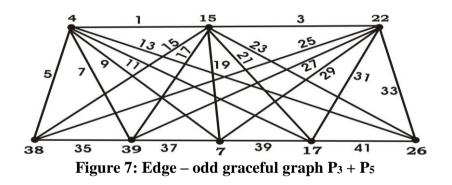
with some arbitrary distinct labeling to its vertices and edges.

327



Lemma 4.4: The connected graph $P_3 + P_5$ is edge – odd graceful.

The following graph in figure 7 is a connected graph with 8 vertices and 21 edges with some arbitrary distinct labeling to its vertices and edges.



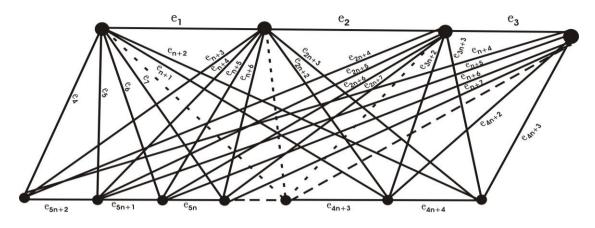
Section 5: Edge-odd Gracefulness of the graph P₄ + P_n

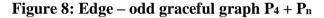
Definition 5.1: $P_4 + N_n$ is a connected graph such that every vertex of P_4 is adjacent to every vertex of null graph N_n together with adjacency in both P_4 and P_n . It has n + 4 vertices and 5n+2 edges.

Theorem 5.2: The connected graph $P_4 + P_n$ for n = 1, 2, 3, 4, ..., (5n + 2) is edge – odd graceful.

Proof: The figure 8 is connected graph $P_4 + P_n$ with n + 4 vertices and 5n+2 edges, with some arbitrary labeling to its vertices and edges **for case (i).**

Case (i): n = 1, 2, ..., (5n + 2) and $n \neq 8, 14, 20, 26, ... (6m + 2)$.





Define f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ by **Case (i).** $n \equiv 0 \pmod{6}$ $f(e_i) = (2i-1)$, for i = 4, 5, ..., (5n+2) $f(e_1) = 3$; $f(e_2) = 5$; $f(e_3) = 1$

Case (ii). $n \equiv 1 \pmod{6}$ f(e_i) = (2i-1), for i = 1, 2, ..., (5n+2)

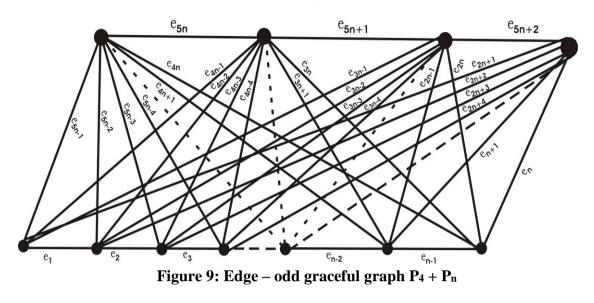
Case (iii). $n \equiv 3 \pmod{6}$ f(e_i) = (2i-1), for i = 1, 2, ..., (5n+2); i $\neq 4 \& 4n + 3$ (Rule 7)

 $f(e_4) = 8n + 5; f(e_{4n} + 3) = 7$

Case (iv). $n \equiv 4 \pmod{6}$ f(e_i) = (2i-1), for i = 4, 5, 6, ..., (5n+2) f(e₁) = 5; f(e₂) = 1; f(e₃) = 3

Case (v). $n \equiv 5 \pmod{6}$ f(e_i) = (2i-1), for i = 1, 2, 5, 6, ..., (5n+2) f(e₃) = 7; f(e₄) = 5

Case (v): $n \equiv 8, 14, 20, 26, ... (6m + 2), m = 1, 2, ...,$ The figure 9 is connected graph $P_4 + P_n$ with n + 4 vertices and 5n+2 edges, with some arbitrary labeling to its vertices and edges for this case (v).



Define f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ by $n \equiv 2 \pmod{6}$ (Rule 8) $f(e_i) = (2i-1), \text{ for } i = 1, 2, ..., (5n+2); i \neq 2n \& 4n-1$ $f(e_{2n}) = 8n - 3; f(e_{4n-1}) = 4n - 3$ Define f⁺: V(G) $\rightarrow \{0, 1, 2, ..., (2q-1)\}$ by f⁺ (v) $\equiv \Sigma$ f(uv) mod (2q), where this sum run over all edges through v (Rule 9). Hence the map f and the induced map f⁺ provide labels as distinct odd numbers for

Hence the map f and the induced map f ⁺ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2q-1)\}$. Hence the graph $P_4 + P_n$ is edge-odd graceful.

Lemma 5.3: The connected graph $P_4 + P_4$ is edge – odd graceful.

Proof: The following graph in figure 10 is a connected graph with 8 vertices and 22 edges with some arbitrary distinct labeling to its vertices and edges.

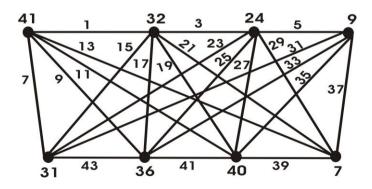
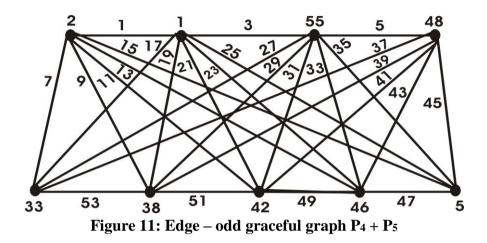


Figure 10: Edge – odd graceful graph P4 + P4

Lemma 5.4: The connected graph $P_4 + P_5$ is edge – odd graceful.

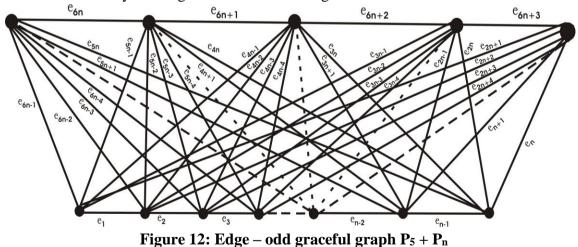
The following graph in figure 11 is a connected graph with 9 vertices and 27 edges with some arbitrary distinct labeling to its vertices and edges.



Section 6: Edge-odd gracefulness of the graph P5 + Pn

Definition 6.1: $P_5 + N_n$ is a connected graph such that every vertex of P_5 is adjacent to every vertex of null graph N_n together with adjacency in both P_5 and P_n . It has n + 5 vertices and 6n+3 edges.

Theorem 6.2: The connected graph $P_5 + P_n$ for all $n \neq 7$ is edge – odd graceful. **Proof:** The figure 12 is connected graph $P_5 + P_n$ with n + 5 vertices and 6n+3 edges, with some arbitrary labeling to its vertices and edges.



Define f ⁺: V(G) $\rightarrow \{0, 1, 2, ..., (2q-1)\}$ by

 $f^+(v) \equiv \Sigma f(uv) \mod (2q)$, where this sum run over all edges through v (Rule 11) Hence the map f and the induced map f⁺ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in $\{0, 1, 2, ..., (2q-1)\}$. Hence the graph $P_5 + P_n$ is edge-odd graceful.

Lemma 6.3: The connected graph $P_5 + P_7$ is edge – odd graceful.

The graph in figure 13 is a connected graph with 12 vertices and 45 edges with some arbitrary distinct labeling to its vertices and edges.

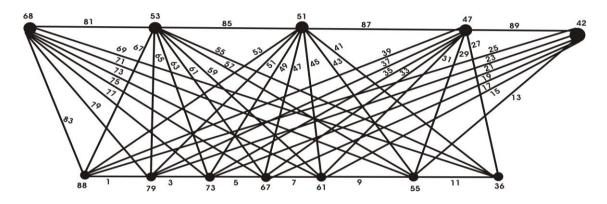


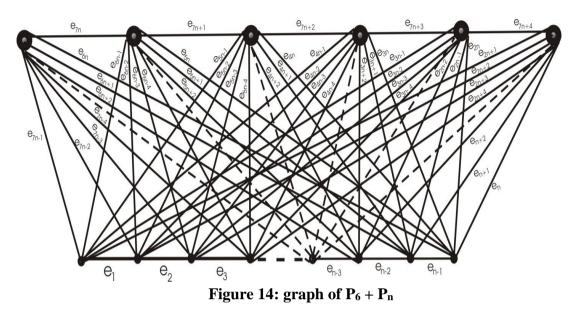
Figure 13: Edge – odd graceful graph P5 + P7

Section 7: Edge-odd Gracefulness of the graph $P_6 + P_n$

Definition 7.1: $P_6 + N_n$ is a connected graph such that every vertex of P_6 is adjacent to every vertex of null graph N_n together with adjacency in both P_6 and P_n . It has n + 6 vertices and 7n+4 edges.

Theorem 7.2: The connected graph $P_6 + P_n$ for all $n \neq 7$ and 8 is edge – odd graceful. **Proof:** The figure 14 is connected graph $P_6 + P_n$ with n + 6 vertices and 7n + 4 edges, with some arbitrary labeling to its vertices and edges.

332



Define f: E(G) \rightarrow {1, 3, ..., 2q-1} by f(e_i) = (2i-1), for i = 1, 2, ..., (7n+4)

[Rule 12]

Define f ⁺: V(G) \rightarrow {0, 1, 2, ..., (2q-1)} by

 $f^+(v) \equiv \Sigma f(uv) \mod (2q)$, where this sum run over all edges through v [Rule 13] Hence the map f and the induced map f⁺ provide labels as distinct odd numbers for edges and also the labelings for vertex set has distinct values in {0, 1, 2,..., (2q-1)}. Hence the graph $P_6 + P_n$ is edge-odd graceful.

Lemma 7.3: The connected graph $P_6 + P_7$ is edge – odd graceful.

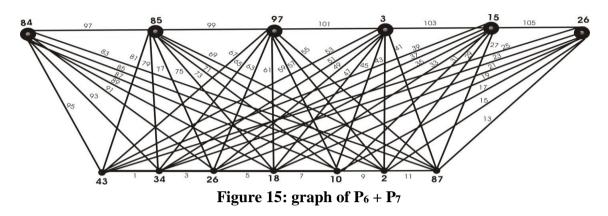
The graph $P_6 + P_7$ is a connected graph with 13 vertices and 53 edges. All the edges of the graph are labeled with distinct odd numbers in such a way that there will be distinct labeling for all its vertices.

Define f: E(G) \rightarrow {1, 3, ..., 2q-1} by f(e_i) = (2i-1), for i = 1, 2, ..., 53

Define f⁺: V(G) $\rightarrow \{0, 1, 2, ..., (2q-1)\}$ by

 $f^+(v) \equiv \Sigma f(uv) \mod (2q)$, where this sum run over all edges through v Hence the graph $P_6 + P_7$ is edge-odd graceful.

The graph with edge-odd graceful labeling is given in the figure 15



Lemma 7.4: The connected graph $P_6 + P_8$ is edge – odd graceful.

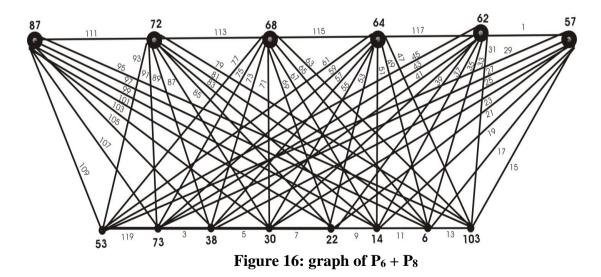
The graph $P_6 + P_8$ is a connected graph with 14 vertices and 60 edges. All the edges of the graph are labeled with distinct odd numbers in such a way that there will be distinct labeling for all its vertices.

Define f: E(G) \rightarrow {1, 3, ..., 2q-1} by f(e_i) = (2i-1), for i = 1, 2, ..., 60

Define f⁺: V(G) $\rightarrow \{0, 1, 2, ..., (2q-1)\}$ by f⁺ (v) $\equiv \Sigma$ f(uv) mod (2q), where this sum run over all edges through v

Hence the graph $P_6 + P_8$ is edge-odd graceful.

The graph with edge-odd graceful labeling is given in the figure 16.



REFERENCES

- Barrientos, C., The gracefulness of unions of cycles and complete bipartite graphs,
 J. Combin. Math. Combin. Comput. Volume 52, (2005), 69-78.
- [2] Choudum, S.A., and Kishore, S. P. M., Graceful labellings of the union of paths and cycles, Discrete Math., Volume 206, (1999), 105-117.
- [3] Gao, Z., Odd graceful labelings of some union graphs, J. Nat. Sci. Heilongjiang Univ., Volume 24, (2007), 35-39.
- [4] Hoede, C., and Kuiper, H., All wheels are graceful, Util. Math., Volume 14, (1987). 311-322.
- [5] Kaneria, V.J., Jariya, M.M., and Meghpara, M., Graceful labeling for some star related graphs, Int. Math. Forum, Volume 9 (26), (2014a), 1289-1293.
- [6] Kaneria, V. J., Makadia, H. M., and Jariya, M. M., and Meghpara, M., Graceful labeling for complete bipartite graphs, Appl. Math. Sci., Volume 8 (103), (2014b), 5099 - 5104.
- [7] Kaneria, V. J., Meghpara, M., and Makadia, H.M., Graceful labeling for open star of graphs, Int. J. Math. Stat. Invention, (IJMSI), Volume 2 (9), (2014c), 19-23.
- [8] Liu, J. B., Zou, T., Lu, Y., Gracefulness of Cartesian product graphs, Pure Appl. Math. (Xi'an), Volume 28, No.3, (2012), 329-332.
- [9] Mishra, D., and Panigrahi, P., Graceful lobsters obtained by component moving of diameter four trees, Comput. Math. Appl., Volume 50, (2005), 367-380.
- [10] Rahim, M. T. and Slamin, Most wheel related graphs are not vertex magic, Util. Math., Volume 77, (2008), 193-199.
- [11] Seoud, M.A., and Abdel-Aal, M.E., On odd graceful graphs, Ars.Comb.108 (2013),161-185.
- [12] Sudha,S.,and Kanniga,V., Gracefulness of some new class of graphs, Engin. Sci. Internat. Reser. J., Volume 1, No. 1, (2013), 81-83.
- [13] Vaidya, S. K., and Lekha, B., Odd graceful labeling of some new graphs, Modern Appl. Sci., Volume 4 (10), (2010a), 65-70.
- [14] Vaidya, S. K., and Lekha, B., New families of odd graceful graphs, Internat. J. Open Problems Comp. Sci. Math., Volume 3(5), (2010b), 166-171.
- [15] Vaidya, S. K., and Shah, N. H., Graceful and odd graceful labeling of some graphs, Internat. J. of Math. Soft Computing, volume 3 (1), (2013), 61-68.