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Abstract 

The unsteady hydromagnetic forced convection from an infinite horizontal 

porous plate with energy dissipation flow of a second grade and electrically 

conducting fluid in a rotating system taking Hall current into account with 

constant suction in presence of transverse magnetic field is studied. The entire 

system is rotates with a constant angular velocity about the normal to the plate. 

The governing equations are solved by using multi parameter-perturbation 

technique. The analytical expressions for the velocity, temperature field, skin 

friction, the rate of heat transfer at the plates in terms of  Nusselt number have 

been obtained. The effects of visco-elastic parameter, on the velocity, 

temperature and skin friction, Nusselt number have been illustrated 

graphically, in combination with other flow parameters involved in the 

solution. The problem has some relevance in the geophysical and 

astrophysical studies. 

Keywords: Visco-elastic, MHD, Hall effect, Forced convection, skin friction, 

Rotating system. 
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1. INTRODUCTION 

The study of fluid flow through porous media and heat transfer is fundamental in 

nature. It is of great practical importance in view of several physical problems such as 

seepage of water in river beds, porous heat exchangers, cooling of nuclear reactors, 

filtration and purification process. Because of its industrial importance, problem of 

flow and heat transfer in porous medium in the presence of magnetic field has been 

the subject of many experimental and analytical studies. The investigations 
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considering rotational effects are also very important, and the reason for studying 

flow in a rotating porous medium or rotating flow of a fluid overlying a porous 

medium in the presence of a magnetic field is fundamental because of its numerous 

applications in industrial, astrophysical and geophysical problems. 

The influence of magnetic field on electrically conducting visco-elastic 

incompressible fluid is of importance in many applications such as extrusion of 

plastics in the manufacture of rayon and nylon, the purification of crude oil, and the 

textile industry, etc. In many process industries the cooling of threads or sheets of 

some polymer materials is important in the production line. The rate of the cooling 

can be controlled effectively to achieve final products of desired characteristics by 

drawing threads, etc., in the presence of an electrically conducting fluid subjected to 

magnetic field. The study of magneto hydrodynamic (MHD) plays an important role 

in agriculture, engineering   and petroleum industries. The MHD has also its own 

practical applications. For instance, it may be used to deal with problems such as the 

cooling of nuclear reactors by liquid sodium and induction flow meter, which depends 

on the potential difference in the fluid in the direction perpendicular to the motion and 

to the magnetic field.MHD in the present form is due to the pioneer contribution of 

several authors like Alfven[1],Cowling[2], Ferraro and Pulmpton[3], Shercliff[4] and 

Crammer and Pai[5].    

When the strength of the applied magnetic field is sufficiently large, Ohm’s law needs 

to be modified to include Hall current and this fact was emphasized by Cowling[2]. 

The Hall Effect is due merely to the sideways magnetic force on the drafting free 

charges .The electric field has to have a component transverse to the direction of the 

current density to balance this force. In many works of plasma physics, it is not paid 

much attention to the effect caused due to Hall current. However, the Hall Effect 

cannot be completely ignored if the strength of the magnetic field is high and number 

of density of electrons is small as it is responsible for the change of the flow pattern of 

an ionized gas. Hall Effect results in a development of an additional potential 

difference between opposite surfaces of a conductor for which a current is induced 

perpendicular to both the electric and magnetic field. This current is termed as Hall 

current. The effect of Hall current on MHD convection flow problems have been 

carried out by Pop[6],Kinyanjui et al.[7],Archrya et al.[8], Dutta et al.[9] and Maleque 

and Sattar[10], Naik et al.[11] are some of them. 

The study of rotating flow problems are also important in the solar physics dealing 

with sunspot development, the solar cycle and the structure of rotating magnetic 

stars.It is well known that a number of astronomical bodies possesses fluid interiors 

and magnetic fields. Changes that take place in the rate of rotation, suggest the 

possible importance of hydro magnetic spin-up. Debnath [12],Singh [13] and Takhar 

et al. [14] have studied the problems of spin-up in MHD under different conditions. 
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In this study, an attempt has been made to extend the problem studied by Ahmed et 
al.[15] to the case of visco-elastic fluid characterized by second-order fluid [Coleman 

and Noll] [16]  and [Coleman and Markovitz (1964)][17]. 

 

2. MATHEMATICAL FORMULATION 

The equations governing the motion of an incompressible visco-elastic electrically 

conducting fluid in a rotating system in presence of a magnetic field are as follows. 

Equation of continuity: 0.  q


             (2.1) 

Momentum equation: qBJpqqrq
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Gauss’s law of magnetism: 0.  B
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Kirchhoff’s first law: 0.  J
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We now consider an unsteady visco-elastic fluid past a porous horizontal plate with 

constant suction velocity 0w (say).Choose the origin on the plate and the x -axis 

parallel to the direction of  the  flow and the y -axis along the width of the plate. The 

z -axis is considered perpendicular to the plate and directed into the fluid region and 

it is the axis of rotation about which the fluid rotates with angular velocity  . A 

uniform magnetic field is applied in the transverse direction of  the flow.Let ),,( wvu
be the fluid velocity at a point ),,( zyx . 

Our investigation is restricted to the following assumptions: 

i) All the fluid properties are constants and the buoyancy force has no effect on 

the flow.  

ii) The plate is electrically non- conducting. 
iii)  The entire system is rotating with angular velocity   about the normal to the 

plate and   is so small that )( r . 

iv)  The magnetic Reynolds number is so small that the induced magnetic field can 

be neglected. 

v)  pe is constants. 

vi) 0E

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The equation of continuity gives  

0




z


, with 0  =a constant=suction velocity.          (2.7) 

With the foregoing assumptions and under the usual boundary layer approximations, 

the equations governing the flow and heat transfer are 
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The relevant boundary conditions are 
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We introduce the following non-dimensional quantities: 
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The non-dimensional governing equations and boundary conditions are 
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Subject to the boundary conditions  
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3. SOLUTION OF THE PROBLEM 

Let us introduce the complex variable q defined by q=u+iv where i2=-1. The non-

dimensional forms of the equation governing the flow can be rewritten as 
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subject to the boundary conditions: 
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Assuming the small amplitude oscillation ε<<1, we represent the velocity q and the 

temperature T as 
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Substituting the expressions form (3.4) and (3.5) in equations (3.1) and (3.2) and by 

equating the harmonic terms and neglecting ε2 the following differential equations are 

obtained: 
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The relevant boundary conditions are: 
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Here, 0q and 1q
 indicate the conjugate of the complex numbers q0 and q1 respectively. 

Again to solve the equation (3.7) we use the multi-perturbation technique and the 

velocity components are expanded in the power of visco-elastic parameter d as d<<1 

for small shear rate. Thus the expressions for velocity components are considered as 

11101 dqqq                 (3.11) 

Applying (3.11), in equations (3.7) equating the like powers of d we obtain the 

following set of differential equations : 
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The solutions of the equations (3.6),(3.8),(3.9),(3.12) and (3.13) subject to the 

boundary conditions (3.10) and (3.14) are 
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4. VELOCITY AND TEMPERATURE FIELD 

The non-dimensional velocity Field is given by 
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By splitting in to real and imaginary parts the primary and secondary velocity 

components are derived as 
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The temperature in non-dimensional form is given by 
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Where ))(arg( 1 zT  

 

5. SKIN-FRICTION 

The skin-friction at the plate in the direction of primary and secondary velocities are 

respectively given by 
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6. COEFFICIENT OF HEAT-TRANSFER 

The rate of heat transfer in terms of Nusselt number from the plate to the fluid is 

given by 
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7. RESULTS AND DISCUSSIONS: 

The objective of the present paper is to investigate the effects of Hall current 

andmagnetic field on visco-elastic fluid flow past an infinite horizontal porous plate 

with dissipative heat in a rotating system due to importance of such problem in many 

spaceand temperature related phenomena. 

In order to get physical insight of the effects of flow parameters on the flow problems 

under considerations we make graphical illustrations for velocity field, temperature 

field, shearing stress and coefficient of heat transfer i,e, Nusselt number. The 

parameters ε=0.01, Ω =0.5, ω =0.5, t=1 are kept fixed throughout the discussion. The 

non-zero valuesof the parameter d characterize the visco-elastic fluid and d=0 

represent the Newtonian fluid flow phenomenon. 

 

 

Figure 1: m=2, M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, d=-0.3, Pr=7 
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Figure 1 reveal the effects of the visco-elastic parameter d on the fluid velocity 

components u and v. It has been observed from the figure that both primary 

velocity(u)and secondary velocity(v) increases with the increasing values of the visco-

elasticparameter d for fixed Hall parameter(m), Prandtl number(Pr) and Magnetic 

parameter(M). 

 

Figure 2: d=-0.3, M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, d=-0.3, Pr=7 

 

Figure 3: d=-0.3, m=2, ε =0.01, Ω =0.5, ω =0.5, t=1, d=-0.3, Pr=7 
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Figure 4:  M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, Pr=7 

 

Figure 5:  M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, Pr=7 

 

Figure 4 and 5 displays the shearing stress for both primary and secondary flow 
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parameter shearing stressdecreases for the primary flow and increases for secondary 

flow. 
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Figure 6 and 7 displays the temperature T against z for various values of Prandtl 

number(Pr) and Hall parameter(m). It is observed from the figures that temperature 

decreases with increase of Prandtl number(Pr) and Hall parameter(m). 

 

Figure 6: m=2, M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, d=-0.3, E=0.2 

 

 

Figure 7: M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, d=-0.3, E=0.2, Pr = 7 
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Figure 8 and 9 depict the behaviours of coefficient of heat transfer i,e, Nusselt number 

against Hall parameter m and Prandtl number(Pr).It is noticed that in Figure 10 

Nusseltnumber increases with the decrease of visco-elastic parameter d and increases 

with the increase of Prandtl number(Pr).Also it is noticed that in figure 11 the 

coefficient of heat transfer i,e, Nusselt number increases with the increase of Prandtl 

number (Pr) and Eckert number(E). 

 

Figure 8:  M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, Pr=7, E =0.2 

 

 

Figure 9:  m=2, M=2, ε =0.01, Ω =0.5, ω =0.5, t=1, d = - 0.3. 
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8. CONCLUSION 

The forced convective second order fluid flow in a rotating system with Hall effects 

inpresence of heat transfer are studied in this paper. Some of the important 

conclusions of this paper are as follows 

i. The flow field is significantly affected with the variation of visco-elastic 

parameter. 

ii. The effect of Hall parameter and magnetic parameter on velocity is prominent 

throughout the flow in presence of other flow parameter. 

iii. The temperature field is significantly affected with the variation of Hall 

parameter and Prandtl number. 

iv. The rate of heat transfer that is Nusselt number is significantly affected during 

the variation of visco-elastic parameter throughout the fluid flow phenomenon. 

v. The primary and secondary components of shearing stress are prominently 

affected by the visco-elastic parameter. 
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Nomenclature 

q  is the velocity vector 

  is the angular velocity of the fluid 

ρ is the fluid density 

r  is the position vector of the fluid 

particle 7.  

p is the pressure 

J


 is the current density 

B


is the magnetic induction vector 

μ is the co-efficient of viscosity 

σ is the electrical conductivity 

t  is the time 

Bo is the strength of the applied 

magnetic field 

Cp is the specific heat at constant 

pressure 

T  is the temperature 

K is the thermal conductivity 

φ is the frictional heat 

ωe is the electron frequency 

τe is the electron collision time 

e is the electron charge 

ηe is the number density of electron 

pe is the electron pressure 

E


is the electric field 
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ν is the kinematic viscosity 

m is the Hall parameter 

U is the dimensional free stream 

velocity 

α is the thermal diffusivity 

u is the non-dimensional primary 

velocity 

v is the non-dimensional secondary 

velocity 

  is the frequency of oscillation 

M is the Hartmann number 

Pr is the Prandtl number 

E is the Eckert number  

d is the visco-elastic parameter 

 

REFERENCES 

[1] H. Alfven, Nature., 150, (1942), 405. 

[2] T. G. Cowling, Magnet hydrodynamics, Wiley Inter Science, (New York. 

1957). 

[3] V. C. A. Ferraro and C. Pulmpton, An introduction to Magneto Fluid 

Mechanics, (Clarandon Press, Oxford. 1966). 

[4] J. A. Shercliff, A text book of Magneto hydrodynamics, (Pergamon Press, 

London. 1965). 301 

[5] K. P. Crammer and S. L. Pai, Magneto-fluid Dynamics for Engineering and 

applied Physics, (Mc-Graw Hill book Co. New York. 1978). 

[6] I. Pop, J. Math. Phys. Sci., 5, (1971), 375. 

[7] M. Kinyanjuli, J. K. Kwanza and S. M. Uppal, Energy Conversion and 

Management, 42, (2001), 917. 

[8] M. Acharya, G. C. Das and L. P. Singh, Indian J. Physics B., 75B, (2001), 

168. 

[9] N. Datta and R. N. Jana, J. Phys. Soc. Japan., 40, (1976), 1469. 

[10] K. A. Malique and M. A. Sattar, Int. J. Heat and Mass Transfer., 48, (2005), 

4963. 

[11] S. H. Naik1, M. V. Ramana Murthy, K. Rama Rao, Inl J of Comp. Eng. 

Research (IJCER,) 04(2014), 7. 

[12] L. Debnath, ZAMM., 55, (1975), 431. 

[13] K. D. Singh., ZAMM., 80, (2000), 429. 

[14] H. S. Takhar, A. J. Chamkha and G. Nath, Int. J. Eng. Sci., 40, (2002), 1511. 

[15] N.Ahmed,J.K.Goswami,Turk J Phy 35 (2011) , 293 – 302 



Forced Convective Second Grade Fluid Flow in a Rotating System with Hall Effects 309 

[16] B. D. Coleman,  and H. Markovitz,    Adv. Appl. Mech. 8, (1964).  69. 

[17] B.D. Coleman,.and W. Noll, Archs ration, MechAnalysis. 6, (1960). 355. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



310  Hridi Ranjan Deb 

 

 

 


