$\delta \omega \alpha$ -Closed Sets in Topological Spaces

S.Chandrasekar¹, T. Rajesh Kannan² and M.Suresh³

 ^{1,2}Department of Mathematics, Arignar Anna Government Arts college, Namakkal(DT), Tamil Nadu, India.
²Department of Mathematics, RMD Engineering College, Kavaraipettai, Gummidipoondi, Tamil Nadu, India.

Abstract

In this paper we introduced new type of closed sets is called $\delta\omega\alpha$ -closed sets in the topological spaces. Moreover we discuss the relations between $\delta\omega\alpha$ -closed sets and already available various closed sets. Also we studied some properties and applications of $\delta\omega\alpha$ -closed, $\delta\omega\alpha$ - interior and $\delta\omega\alpha$ -closure.

Key Words: $\delta\omega\alpha$ -closed sets, $\delta\omega\alpha$ -open sets , $\delta\omega\alpha$ - interior and $\delta\omega\alpha$ - closure.

AMS subject classification: 54C55,54A05

1. INTRODUCTION

In 1968 Velicko introduced δ -closed set in Topological spaces [19]. Using δ -closed set several results introduced by many researcher. $\omega\alpha$ -closed set[1] introduced by S. S. Benchalli,etal., in the year 2009. Since the advent of these types of notions, several author have been introduced interesting results. δg -closed set introduced by Dontchev[3](1999). In 1965 Njastad[10] introduced α -open sets. The aim of the present paper is study the concept of $\delta\omega\alpha$ -closed sets and its various characterizations are investigated. Also, we further studied about $\delta\omega\alpha$ -interior $\delta\omega\alpha$ -closure in topological spaces.

2. PRELIMINARIES

Throughout this research paper (X, τ) (or simply X) represent topological spaces ,For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

Let us recall the following definition, which are useful in the sequel.

Definition: 2.1

A subset A of (X,τ) is called if

- 1) Regular closed set [18] if cl(int(A))=A.
- 2) Semi closed set [6] if $int(cl(A))) \subseteq A$
- 3) α closed set [10] if cl(int(cl(A))) \subseteq A
- 4) δ -closed [19] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x \in X: int(cl(G)) \cap A \neq \phi, G \in \tau \text{ and } x \in G\}$.
- 5) g-closed set [5] if $cl(A) \subseteq U$ whenever $A \subseteq U$, U is open in (X, τ) .
- 6) α g-closed set[7] if α cl(A) \subseteq U whenever A \subseteq U, U is open in (X, τ).
- 7) ga-closed set[8] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$, U is α open in (X, τ) .
- 8) δg -closed set [3] if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$, U is open in (X, τ) .
- 9) g δ -closed set [4] if cl(A) \subseteq U whenever A \subseteq U, U is δ -open in (X, τ).
- 10) $\delta g^{\#}$ -closed set[20] if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$, U is δ -open in (X, τ) .
- 11) ω -closed set [16] if cl(A) \subseteq U whenever A \subseteq U, U is semi open in (X, τ).
- 12) $\omega \alpha$ -closed set [1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$, U is ω open in (X, τ) .
- 13) $\alpha\omega$ -closed set [12] if ω -cl(A) \subseteq U whenever A \subseteq U, U is α -open in (X, τ).
- 14) δg^* -closed set[17] if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$, U is g-open in (X, τ) .
- 15) $g\omega\alpha$ -closed set [2] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$, U is $\omega\alpha$ -open in (X, τ) .
- 16) $g^*\omega\alpha$ -closed set[11] if cl(A) $\subseteq U$ whenever $A \subseteq U$, U is $\omega\alpha$ -open in (X, τ).
- 17) $\delta(\delta g)^*$ -closed set[9] if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$, U is δg -open in (X, τ) .

The complements of the above listed closed sets are their concern open sets.

3. δωα-CLOSED SETS

In this section we introduce $\delta\omega\alpha$ -closed set in topological space (X , τ).

Definition: 3.1

A subset A of a topological space (X, τ) is called $\delta \omega \alpha$ -closed set if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$, U is $\omega \alpha$ - open set in (X, τ) the complement of $\delta \omega \alpha$ -closed set is called $\delta \omega \alpha$ -open set.

Proposition 3.2

Every δ -closed set is $\delta\omega\alpha$ -closed.

Proof:

Assume that A is a δ - closed and Let U be any $\omega\alpha$ -open set such that $A \subseteq U$. Here A is δ -closed. $A=cl_{\delta}(A)$ for any subset A in (X, τ) . This implies that $cl_{\delta}(A)\subseteq U$. Here A is $\delta\omega\alpha$ -closed Set.

Remark: 3.3

Converse of the above theorem need not be true from the following example.

Let (X, τ) be a topological space with $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, c\}, \{c\}, \{b, c\}\}$. Here we take a subset $A = \{c\}$, A is $\delta \omega \alpha$ closed but not δ -closed.

Proposition 3.4

Every regular closed set is $\delta\omega\alpha$ -closed.

Proof:

Assume that A is a regular closed set and Let U be any $\omega\alpha$ -open set such that $A \subseteq U$. Here A is regular closed set. This implies A is a δ - closed and $A=cl_{\delta}(A)$ for any subset A in (X, τ) . This implies that $cl_{\delta}(A)\subseteq U$. Here A is $\delta\omega\alpha$ -closed Set.

Remark: 3.5

Converse of the above theorem need not be true from the following example.

Let (X, τ) be a topological space with $X = \{a, b, c, d, e\}$ and

 $\tau = \{\phi, X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$ Here we take a subset A={a,b,c,e}.A is $\delta\omega\alpha$ closed but not r-closed.

Proposition 3.6

Every $\delta\omega\alpha$ -closed set is δg -closed.

Proof:

Consider, A is a $\delta\omega\alpha$ closed set and Let U be an open such that $A \subseteq U$. We know that, every open set is $\omega\alpha$ -open set. Therefore U is an $\omega\alpha$ open set such that $A \subseteq U$. Here A is $\delta\omega\alpha$ -closed set, it imply that $cl_{\delta}(A) \subseteq U$. Hence A is δg -closed in (X, τ) .

Remark: 3.7

Converse of the above the theorem need not be from the following example.

Let (X, τ) be a topological space with $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, c\}, \{c\}, \{b, c\}\}$.

Here we take a subset A={a,c}. A is δg closed not $\delta \omega \alpha$ -closed set in (X, τ).

Proposition:3.8

Every $\delta\omega\alpha$ -closed set is α g-closed.

Proof:

Let A be any $\delta\omega\alpha$ -closed set in (X, τ) and V be an open set such that $A \subseteq V$. Therefore V is an $\omega\alpha$ - open set such that $A \subseteq V$. Since A is $\delta\omega\alpha$ -closed set, it implies that $cl_{\delta}(A) \subseteq V$. But $\alpha cl(A) \subseteq cl_{\delta}(A)$ for any A. Therefore . $\alpha cl(A) \subseteq V$. V is an open set in (X, τ) . Hence A is αg -closed.

Remark: 3.9

Converse of the above theorem need not be true from the following example,

Let (X, τ) be a topological space with $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}$. Here we take a subset $A = \{d\}$. A is α g-closed but not $\delta \omega \alpha$ - set in (X, τ) .

Proposition 3.10

Every $\delta\omega\alpha$ -closed set is $\alpha\omega$ -closed.

Proof:

Let A be a $\delta\omega\alpha$ -closed and U be α -open set in (X, τ) such that $A \subseteq U$. Since every α open set is $\omega\alpha$ - open set and A is $\delta\omega\alpha$ -closed, then $\omega cl(A) \subseteq cl(A) \subseteq cl_{\delta}(A)) \subseteq U$ Where U is $\omega\alpha$ - open set. It implies that $\omega cl(A) \subseteq U$. Hence A is $\alpha\omega$ -closed in (X, τ) .

Remark: 3.11

Converse of the above the theorem need not be from the following example.

Let (X, τ) be a topological space with $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}\}$.

Here we take a subset A={a,b,c}. A is $\alpha\omega$ closed not $\delta\omega\alpha$ -closedset in (X, τ).

Proposition 3.12

Every $\delta\omega\alpha$ -closed set is $g\omega\alpha$ -closed but converse need not be true.

Proof:

Let A be a $\delta\omega\alpha$ -closed and U be an $\omega\alpha$ -open set in (X, τ) such that $A \subseteq U$. Since A is $\delta\omega\alpha$ -closed, then $cl_{\delta}(A) \subseteq U$. But $cl(A) \subseteq cl_{\delta}(A) \subseteq U$ [4], it implies that $cl(A) \subseteq U$. Hence A is $g\omega\alpha$ -closed set.

Remark 3.13

Converse of the above theorem need not be true from the following example,

Let (X, τ) be a topological space with $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Here we take a subset $A = \{c\}$. A is gwa-closed but not $\delta \omega \alpha$ -closed.

Proposition 3.14

Every $\delta\omega\alpha$ -closed set is g* $\omega\alpha$ -closed but converse need not be true.

Proof:

Let A be a $\delta\omega\alpha$ -closed and U be an $\omega\alpha$ -open set in (X, τ) such that $A \subseteq U$. Since A is $\delta\omega\alpha$ -closed, then $cl_{\delta}(A) \subseteq U$. But $\alpha cl(A) \subseteq cl_{\delta}(A) \subseteq U$, it implies that $\alpha cl(A) \subseteq U$. Hence A is $g^*\omega\alpha$ -closed set.

Remark 3.15

Converse of the above theorem need not be true from the following example, Let (X, τ) be a topological space with X ={a, b, c} and τ = { ϕ , X, {a}, {a, b}}. Here we take a subset A= {c}.A is g* $\omega\alpha$ - closed but not $\delta\omega\alpha$ closed.

Theorem 3.16

Every $\delta\omega\alpha$ -closed set is ga-closed set but converse need not be true.

Proof:

Let A be a $\delta\omega\alpha$ -closed and U be an α -open set in (X, τ) such that $A \subseteq U$. Since A is $\delta\omega\alpha$ -closed, then $cl_{\delta}(A) \subseteq U$. because every α -open set is $\omega\alpha$ -open set in (X, τ) . But $\alpha cl(A) \subseteq cl_{\delta}(A) \subseteq U$, it implies that $\alpha cl(A) \subseteq U$. Hence A is $g\alpha$ -closed set.

Remark 3.17

Converse of the above theorem need not be true from the following example,

Let (X, τ) be a topological space with $X = \{a, b, c, \}$ and $\tau = \{\phi, X, \{a\}\}$.

Here we take a subset $A = \{c\}$. A is ga-closed but not $\delta \omega \alpha$ closed.

Theorem 3.18

Every $\delta\omega\alpha$ -closed set is $\delta g^{\#}$ -closed but converse need not be true.

Proof:

Let A be a $\delta \omega \alpha$ -closed and U be an δ -open set in (X, τ) such that $A \subseteq U$. Since A is $\delta \omega \alpha$ -closed, then $cl_{\delta}(A)) \subseteq U$ where U is $\omega \alpha$ -open set .it implies that $cl_{\delta}(A)) \subseteq U$. Hence A is $\delta g^{\#}$ -closed set.

Remark 3.19

Converse of the above theorem need not be true from the following example,

Let (X, τ) be a topological space with $X = \{a, b, c, \}$ and $\tau = \{\phi, X, \{a\}\}$. Here we take a subset $A = \{c\}$. Ais $\delta g^{\#}$ -closed but not $\delta \omega \alpha$ closed.

Theorem 3.20

Every $\delta\omega\alpha$ -closed set is g δ -closed but converse is notneed be true.

Proof:

Let A be a $\delta\omega\alpha$ -closed and U be an δ -open set in (X, τ) such that $A \subseteq U$. Since A is $\delta\omega\alpha$ -closed, then $cl_{\delta}(A) \subseteq U$. But $cl(A) \subseteq cl_{\delta}(A) \subseteq U$, it implies that $cl(A) \subseteq U$. Hence A is g δ -closed set.

Remark 3.21

Converse of the above theorem need not be true from the following example,

Let (X, τ) be a topological space with $X = \{a, b, c, \}$ and $\tau = \{\phi, X, \{a\}\}$.

Here we take a subset $A = \{c\}$. A is $g\delta$ -closed but not $\delta\omega\alpha$ closed.

Remark 3.22

 $\delta\omega\alpha$ -closed set is independent with following closed sets are

closed set ,a-closed set , $\omega a\text{-closed set}$, δg^* -closed set ,and $\delta (\delta g)^*$ closed set

above result we can prove by using followingexamples.

Example 3.23

Let (X, τ) be a topological space with $X = \{a, b, c\}$ with $\tau = \{\phi, \{a, b\}, X\}$.

Here we take a subset A={ c }.A is closed, α -closed and $\omega\alpha$ -closed set but not $\delta\omega\alpha$ -closed set.

Example 3.24

Let (X, τ) be a topological space with $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$.

The subset A={ b } is $\delta\omega\alpha$ -closed set but not closed, α -closed and $\omega\alpha$ -closed in (X, τ).

Example 3.25

Let (X, τ) be a topological space with X={a,b,c,d} with $\tau = \{\phi, \{c\}, \{a,b\}, \{c,d\}, \{a, b, c\}, X\}$.

Here we take a subset A={b,c,d}.A is not δg^* and $\delta (\delta g)^*$ closed set but $\delta \omega \alpha$ -closed set.

Example 3.26

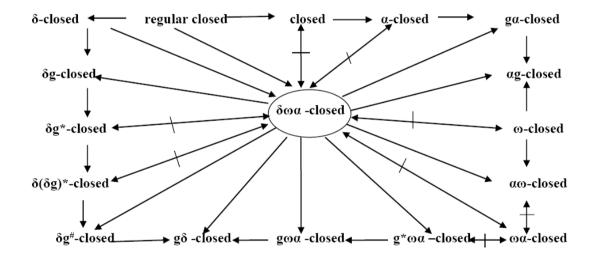
Let (X, τ) be a topological space with $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$.

Here we take a subset A = { c}. A is δg^* and $\delta(\delta g)^*$ closed set but not $\delta \omega \alpha$ -closed set.

Diagram-I

Where $A \longrightarrow B$ represents A implies B but B does not implies A

Where $A \leftrightarrow \rightarrow B$ represents A independent B each other.



4. PROPERTIES AND CHARACTERIZATION OF $\delta\omega\alpha$ -CLOSED

Theorem 4.1

The finite union of $\delta\omega\alpha$ -closed sets is $\delta\omega\alpha$ -closed.

Proof:

Let $\{A_i | i = 1, 2 ...n\}$ be finite class of $\delta \omega \alpha$ -closed subsets of a space (X, τ) . Then for each $\omega \alpha$ -open Set U_i in (X, τ) containing A_i, $cl_{\delta}(A_i) \subseteq U_i$ $i \in \{1, 2, ...n\}$. Hence $\bigcup_{i=1}^{n} A_i \subseteq \bigcup_{i=1}^{n} U_i = V$. Since arbitrary union of $\omega \alpha$ -open sets in (X, τ) is also $\omega \alpha$ -open Set in (X, τ) , V is $\omega \alpha$ -open in (X, τ) . Also $\bigcup_i cl_{\delta}(A_i) = cl_{\delta}(U_i A_i) \subseteq V$. Therefore U_i, A_i is $\delta \omega \alpha$ -closed in (X, τ) .

Remark 4.2:

Intersection of any two $\delta\omega\alpha$ -closed sets in (X,τ) need not be $\delta\omega\alpha$ -closed.

Let (X, τ) be a topological space with $X = \{a, b, c\}$ with $\tau = \{\varphi, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$.

Here we take two subsets $\{a,b\}$ and $\{b,c\}$ are $\delta\omega\alpha$ -closed sets but their intersection of two sets $\{b\}$ is not $\delta\omega\alpha$ -closed.

Theorem 4.3

Let A be $\delta\omega\alpha$ -closed Set of (X,τ) . Then $cl_{\delta}(A)$ -A does not contain a non empty $\omega\alpha$ -Closed set.

Proof:

Suppose that A is $\delta\omega\alpha$ -closed. Let G be $\omega\alpha$ -closed set contained in $cl_{\delta}(A)$ -A. Now G^{C} is $\omega\alpha$ -open set of (X,τ) Such that $A \subseteq G^{C}$. Here A is $\delta\omega\alpha$ -closed Set of (X,τ) . Thus $cl_{\delta}(A) \subseteq G^{C}$.

Therefore $G \subseteq (cl_{\delta}(A))^{C}$. Also $G \subseteq cl_{\delta}(A)$ -A. There $G \subseteq (cl_{\delta}(A))^{C} \cap cl_{\delta}(A) = \phi$. Hence $G = \phi$. Hence $cl_{\delta}(A)$ -A does not contain a non empty $\omega \alpha$ -Closed set.

Theorem 4.4

If A is $\omega \alpha$ -open and $\delta \omega \alpha$ -closed subset of (X, τ) then A is δ -closed subset of (X, τ) .

Proof:

We know that $A \subseteq cl_{\delta}(A)$. Here A is $\omega \alpha$ -open and $\delta \omega \alpha$ -closed, its implies that $cl_{\delta}(A) \subseteq A$. Hence A is δ -closed.

Theorem 4.5

The intersection of a $\delta\omega\alpha$ -closed set and a δ -closed set is $\delta\omega\alpha$ -closed.

Proof:

Let A be $\delta\omega\alpha$ -closed and Let G be δ -closed. Take U is an $\omega\alpha$ -open set with $A \cap G \subseteq U$. This imply $A \subseteq U \cup G^C$. Here $U \cup G^C$ is $\omega\alpha$ -open set . Therefore cl_{δ} (A) $\subseteq U \cup G^C$. Now $cl_{\delta}(A \cap G) \subseteq cl_{\delta}(A) \cap cl_{\delta} G = cl_{\delta}(A) \cap G \subseteq (U \cup G^C) \cap G = U$. Here A \cap F is $\delta\omega\alpha$ -closed.

Theorem: 4.6

If A is a $\delta\omega\alpha$ -closed set is space (X,τ) and $A\subseteq B\subseteq cl_{\delta}(A)$ then B is also $\delta\omega\alpha$ -closed set.

Proof:

Let U be a $\omega \alpha$ -open set of (X,τ) such that $B \subseteq U$. Then $A \subseteq U$. Since A is $\delta \omega \alpha$ -closed set, $cl_{\delta}(A) \subseteq U$. Since $B \subseteq cl_{\delta}(A)$, $cl_{\delta}(B) \subseteq cl_{\delta}(cl_{\delta}(A)) = cl_{\delta}(A)$. Hence $cl_{\delta}(B) \subseteq U$. Therefore B is also a $\delta \omega \alpha$ -closed set.

Theorem 4.7.

Let A be $\delta\omega\alpha$ -closed of (X,τ) . Then A is δ -closed set if $cl_{\delta}(A)$ -A is $\omega\alpha$ -closed.

Proof:

Let A be a δ -closed Subset of X. Then $cl_{\delta}(A)=A$ and so $cl_g(A)-A=\varphi$ which is $\omega\alpha$ - closed.

Conversely ,Here A is $\delta\omega\alpha$ - closed by theorem 4.3 cl_{δ}(A)-A does not contain a nonempty $\omega\alpha$ -closed set. This imply cl_{δ}(A)-A= φ . Therefore cl_{δ}(A)=A. Hence A is δ closed.

5. $\delta\omega\alpha$ - CLOSURE AND $\delta\omega\alpha$ - INTERIOR IN TOPOLOGICAL SPACES

In this section, we introduce the notion of $\delta\omega\alpha$ - Closure and $\delta\omega\alpha$ -Interior of topological Spaces.

Definition 5.1.

The $\delta\omega\alpha$ - closure of a Subset A of X is denoted by $\delta\omega\alpha$ -cl(A) and is defined as the intersection of all $\delta\omega\alpha$ -closed sets containing A.Therefore

 $\delta \omega \alpha$ -cl(A) = $\cap \{F \subseteq X: A \subseteq F \text{ and } F \text{ is } \delta \omega \alpha$ -closed set $\}$.

Definition 5.2

The $\delta\omega\alpha$ -interior of subset A of X is denoted by $\delta\omega\alpha$ -(int A) and is defined as the union of all $\delta\omega\alpha$ -open sets contained in A. Therefore

 $\delta \omega \alpha$ -int(A)= $\cup \{ G \subseteq X : G \subseteq A \text{ and } G \text{ is } \delta \omega \alpha$ - open set $\}$.

Remark 5.3

If $A \subseteq X$ then,

- (i) $A \subseteq \delta \omega \alpha \operatorname{-cl}(A) \subseteq \operatorname{cl}_{\delta}(A)$.
- (ii) $int_{\delta}(A) \subseteq int(A) \subseteq A$.

Theorem: 5.4

Let A and B be any two subsets of a space X then the following properties are true.

- (i) A is $\delta\omega\alpha$ -closed set if and only of $\delta\omega\alpha$ -cl(A) = A.
- (ii) $\delta \omega \alpha$ -cl(A) is the smallest $\delta \omega \alpha$ closed subset of X containing A.
- (iii) $\delta \omega \alpha$ cl(ϕ) = ϕ and $\phi \delta \omega \alpha$ -cl(X) = X.
- (iv) $\delta \omega \alpha$ -cl (A) is a $\delta \omega \alpha$ closed set in (X, τ) ...

- (v) If $A \subseteq B$, then $\delta \omega \alpha cl(A) \subseteq \delta \omega \alpha cl(B)$
- (vi) $\delta \omega \alpha$ -cl (A UB) = $\delta \omega \alpha$ -cl(A) U $\delta \omega \alpha$ -cl(B)
- (vii) $\delta \omega \alpha$ -cl(A \cap B) $\subseteq \delta \omega \alpha$ -cl(A) $\cap \delta \omega \alpha$ -cl(B)
- (viii) $\delta \omega \alpha$ -cl($\delta \omega \alpha$ -cl(A)) = $\delta \omega \alpha$ -cl(A)

Proof:

- (i) we know that A ⊆δωα-cl(A) for any subset A of X. Let A be a δωα- closed set in (X, τ) .Also A ⊆ A and A ∈{F ⊆X: A ⊆F and F is δωα- closed Set}, it implies that A= ∩{F⊆X: A ⊆F and F is δωα- closed Set} ⊆ A. Then δωα-cl(A) ⊆ A. . Hence A= δωα-cl(A).converse is true from the direct definition.
- (ii) By the definition of $\delta\omega\alpha$ -cl(A) ,the intersection of any collection sets is closed. There $\delta\omega\alpha$ -cl(A) is closed. Also if B is any $\delta\omega\alpha$ -closed set containing then $\delta\omega\alpha$ -cl(A) \subseteq B. Therefore $\delta\omega\alpha$ -cl(A) is the smallest $\delta\omega\alpha$ -closed set in(X, τ) containing A.
- (iii) and (iv) -it follows from the Definition .
- (v) We know that $B \subseteq \delta \omega \alpha$ -cl(B)for every B. if $A \subseteq B$ then $A \subseteq \delta \omega \alpha$ -cl(B) .So $\delta \omega \alpha$ -cl(B) is the $\delta \omega \alpha$ -closed set containing A. But $\delta \omega \alpha$ -cl(A) is smallest $\delta \omega \alpha$ -closed set containing A. Therefore $\delta \omega \alpha$ -cl(A) $\subseteq \delta \omega \alpha$ -cl(B).
- (vi) We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$, applying (v), we get $\delta \omega \alpha$ cl(A) $\subseteq \delta \omega \alpha$ -cl(A $\cup B$) and $\delta \omega \alpha$ -cl(B) $\subseteq \delta \omega \alpha$ -cl(A $\cup B$). Then $\delta \omega \alpha$ -cl(A) $\cup \delta \omega \alpha$ cl (B) $\subseteq \delta \omega \alpha$ -cl (A $\cup B$). on the other hand, $\delta \omega \alpha$ -cl(A) is $\delta \omega \alpha$ - closed set containing A and $\delta \omega \alpha$ -cl(B) is $\delta \omega \alpha$ -closed set containing B. Therefore $\delta \omega \alpha$ cl(A) $\cup \delta \omega \alpha$ -cl (B) is $\delta \omega \alpha$ -closed set containing A $\cup B$. But $\delta \omega \alpha$ -cl(A $\cup B$) is $\delta \omega \alpha$ -closed set containing A $\cup B$. Therefore $\delta \omega \alpha$ -cl(A $\cup B$). Therefore $\delta \omega \alpha$ -cl (A $\cup B$) = $\delta \omega \alpha$ -cl (A) $\cup \delta \omega \alpha$ -cl (B).
- (vii) We know that $A \cap B \subseteq A$ and $A \cap B \subseteq B$. by using (v) we have, $\delta \omega \alpha$ -cl($A \cap B$) $\subseteq \delta \omega \alpha$ cl(A) and $\delta \omega \alpha$ cl($A \cap B$) $\subseteq \delta \omega \alpha$ cl(A) $\cap \delta \omega \alpha$ cl(B).
- (viii) we know that $\delta \omega \alpha$ -cl(A) is a $\delta \omega \alpha$ closed set in (X, τ) . Let $\delta \omega \alpha$ cl(A) = G, then G is $\delta \omega \alpha$ - closed Set in (X, τ) . From (i) we have, $\delta \omega \alpha$ -cl(G) = G. It implies that $\delta \omega \alpha$ - cl($\delta \omega \alpha$ - cl(A)) = $\delta \omega \alpha$ - cl(A). In the example 3.5, subsets A= {a} and B= {c}, then $\delta \omega \alpha$ - cl(A)= {a,c}, $\delta \omega \alpha$ - cl(B)= {b,c} and $\delta \omega \alpha$ - cl(A $\cap B$) = ϕ .

Therefore $\{c\} = \delta \omega \alpha$ - $cl(A) \cap \delta \omega \alpha$ - $cl(B) \subseteq \delta \omega \alpha$ - $cl(A \cap B) = \phi$.

Definition 5.5

Let A be any subset of a space X. Then, $\omega \alpha$ -kernel of A is denoted by $\omega \alpha$ -kernel (A) and Is defined as intersection of all $\omega \alpha$ open sets containing A.

Then $\omega \alpha$ -kernel(A) = $\cap \{ U \subseteq X : A \subseteq U \text{ and } U \text{ is } \omega \alpha \text{ open set} \}.$

Theorem 5.6

A subset of a space X is $\delta\omega\alpha$ -closed set if and only if $cl_{\delta}(A) \subseteq \omega\alpha ker(A)$.

Proof:

Let U be a $\omega\alpha$ -open set containing A then $cl_{\delta}(A) \subseteq \omega\alpha ker(A) \subseteq U$. Therefore A is $\delta\omega\alpha$ - closed set.

Conversely suppose A is $\delta\omega\alpha$ - closed in (X, τ) . Then $cl_{\delta}(A) \subseteq U$ where U is $\omega\alpha$ -open in (X, τ) .

Let $x \in cl_{\delta}(A)$.if x does not belong to $\omega \alpha$ -kernel(A) then there exists an $\omega \alpha$ -kernel(A) set U containing A such that x does not belong to U. Then x does not belong to $cl_{\delta}(A)$, which is a contradiction to the hypotheses. Hence $cl_{\delta}(A) \subseteq \omega \alpha ker(A)$.

Definition 5.7

Let N be any subset of topological space X them N is said to be $\delta\omega\alpha$ - neighborhood (denoted by $\delta\omega\alpha$ -nbd) of point $x \in X$ if there exist an $\delta\omega\alpha$ - open set U such that $x \in U \subseteq N$.

Theorem 5.8

A subset A of topological space X is $\delta\omega\alpha$ - closed and $x \in \delta\omega\alpha$ -cl(A) if and only if $N \cap A \neq \varphi$ for Any $\delta\omega\alpha$ -nbd N of x in (X, τ) .

Proof:

Suppose $x \notin \delta \omega \alpha$ -cl(A). Then there exists $\delta \omega \alpha$ -closed set F of X such that $A \subseteq F$ and $x \notin F$. Thus $x \in (X-F)$ is $\delta \omega \alpha$ - open in X. But $A \cap (X-F) = \varphi$ which is a contradiction. Hence $x \in \delta \omega \alpha cl(A)$.Conversely, suppose that there exists an $\delta \omega \alpha$ -nbd N of a point $x \in X$ such that $N \cap A = \varphi$ Then there exists an $\delta \omega \alpha$ -open set F of X such that $x \in F \subseteq N$. Therefore we have $F \cap A = \varphi$ and $x \in (X-F)$. Then $\delta \omega \alpha$ -cl(A) $\in (X-F)$ and $x \notin \delta \omega \alpha$ -cl(A), which is a contradiction to hypothesis that $x \in \delta \omega \alpha$ -cl(A). Therefore $N \cap A \neq \varphi$.

Remark 5.9:

The intersection of any two member of $\delta\omega\alpha$ -N(x) is again a member of $\delta\omega\alpha$ -N(x).

Definition 5.10

Let a be a subset of topological space X. Then a point $x \in X$ is said to be a $\delta \omega \alpha$ -limit point of A if every $\delta \omega \alpha$ -oen set of x contains a point of a other than, x that is $G \cap (A-\{x\})\neq \phi$ for every $\delta \omega \alpha$ - open set G of X. In a topological space X, the set of all $\delta \omega \alpha$ -limit point of given a subset A of X is called $\delta \omega \alpha$ -derived set of A and is denoted by $\delta \omega \alpha$ -d(A).

Theorem 5.11

Let A and B be any two subsets of a space X then the following properties are true:

(i) $\delta\omega\alpha d(\phi) = \phi$

(ii) If $A \subseteq B$, then $\delta \omega \alpha - d(A) \subseteq \delta \omega \alpha - d(B)$

(iii) $\delta \omega \alpha$ -d(A U B) = $\delta \omega \alpha$ -d(A) U $\delta \omega \alpha$ -cl(B)

(iv) $\delta \omega \alpha \operatorname{-d}(A \cap B) \subseteq \delta \omega \alpha \operatorname{-d}(A) \cap \delta \omega \alpha \operatorname{-d}(B)$.

Proof:

(i) Let $x \in X$ and $x \in \delta \omega \alpha \cdot d(\phi)$. Then for every $\delta \omega \alpha \cdot open$ set G containing x, we should have $G \cap (A \cdot \{x\}) = \phi$, which is impossible. Therfore $\delta \omega \alpha \cdot d(\phi) = \phi$.

(ii) Let $x \in \delta \omega \alpha \cdot d(A)$ then x is a limit point of A, $G \cap (A \cdot \{x\}) \neq \phi$ for every $\delta \omega \alpha \cdot nbd$ G containing x. if $A \subseteq B$, then $G \cap (B \cdot \{x\}) \neq \phi$. Therefore $x \in \delta \omega \alpha \cdot d(B)$. Hence $\delta \omega \alpha \cdot d(A) \subseteq \delta \omega \alpha \cdot d(B)$

(iii) We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$ then from property (ii), $\delta\omega\alpha$ -d(A) $\cup \delta\omega\alpha$ -d(B) $\subseteq \delta\omega\alpha$ -d(A $\cup B$) .. On the other hand if $x \notin \delta\omega\alpha$ -d(A) $\cup \delta\omega\alpha$ -d(B), then $x \notin \delta\omega\alpha$ -d(A) and $x \notin \delta\omega\alpha$ -d(B). Therefore there exist $\delta\omega\alpha$ -nbds G₁ and G₂ of x such that G₁∩(A-{ x}) = ϕ and G₂∩ (B-{ x })= ϕ . Since G₁ ∩ G₂ is $\delta\omega\alpha$ -nbd of x, then we get (G₁ ∩ G₂) ∩ [A∪B- { x }] = ϕ . Therefore x $\notin \delta\omega\alpha$ -d(A \cup B). Therefore $\delta\omega\alpha$ -d(A \cup B) $\subseteq \delta\omega\alpha$ -d(A) $\cup \delta\omega\alpha$ -d(B). we get, $\delta\omega\alpha$ -d(A \cup B) = $\delta\omega\alpha$ -d(A) $\cup \delta\omega\alpha$ -cl(B).

(iv)Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, then from property (ii) we have $\delta \omega \alpha \cdot d(A \cup B) \subseteq \delta \omega \alpha \cdot d(A)$ and $\delta \omega \alpha \cdot d(A \cap B) \subseteq \delta \omega \alpha \cdot d(B)$.Consequently, $\delta \omega \alpha \cdot d(A \cap B) \subseteq \delta \omega \alpha \cdot d(A) \cap \delta \omega \alpha \cdot d(B)$

REFERENCES

- S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, ωα-Closed Sets in TopologicalSpaces, The Global J. Appl. Math. and Math. Sci., 2, No. 1-2 (2009), 53-63.
- [2] S. S. Benchalli, P. G. Patil and P. M. Nalwad, Generalized ωα -Closed Sets in Topological Spaces, J. New Results in Science, 7 (2014), 7-19.
- J. Dontchev and M. Ganster, On δ-generalised Closed Sets and T3/4-Spaces, Mem.Fac.Sci. Kochi Univ. Ser. A Math., 17 (1996), 15-31.
- [4] J. Dontchev, I. Arokiarani and K. Balachandran, On generalized δ-closed sets and almost weakly Hausdorff spaces, Q & A in General Topology 18 (2000), 17-30.
- [5] N. Levine, Generalised Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19, No. 2 (1970), 89-96.
- [6] N. Levine, Semi-open Sets and Semi-continuity in Topological Spaces, Amer.Math.Monthly, 70, No. 1 (1963), 36-41.A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α -continuous and α -open mappings, Acta Math. Hung., 41(3-4)(1983), 213-21
- [7] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Sci. Kochi Univ. Ser. A. Math.15(1994), 51–63
- [8] H.Maki, R.Devi, K.Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka. Univ. Ed. Part III, 42,(1993), 13-21
- K. Meena and K. Sivakamasundari, "δ(δg)* -closed sets in topologicalspaces," Int. J.of InnovativeResearch in Sci,,Eng. andTechnology,v.3,(7),14749-14754, 2014
- [10] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961–970.
- [11] P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized star ωα closed Sets in Topological Spaces, J. New Results in Science, 9 (2015), 37-45.
- [12] M.Parimala,R.Udhayakumar2,R. Jeevitha,V. Biju,on ωα -closed sets in topological spaces Int. Journal of Pure and Applied Mathematics Vol.115 No. 5 2017, 1049-1056
- [13]. O.Ravi, S.Ganesan and S.Chandrasekar, Almostαgs-closed functions and separation axioms.Bulletin of Mathematical Analysis and Applications, Vol3 Issue 1(2011), 165-177.
- [14]. O.Ravi, S.Ganesan and S.Chandrasekar ğ-preclosed sets in topology International Journal of Mathematical Archive-2(2), Feb. - 2011, Page: 294-299

- [15]. O.Ravi, S.Chandrasekar and S.Ganesan(\tilde{g} , s)-Continuous Functions between Topological Spaces ,Kyungpook Math. J. 51(2011), 323-338
- [16] P. Sundaram and M. Sheik John, On w-closed sets in topology, ActaCienciaIndica 4(2000),389–392.
- [17]. K Sudha.R.andSivakamasundari.k.(2012), δg*-closed sets in topological spaces, International Journal of Mathematical Archieve,3(3),1222-1230.C
- [18]. M. Stone. Application of the theory of boolean rings to general topology. Transactions of the American Mathematical Society, 41:374–481, 1937.
- [19]. N.V.Velicko,H-Closed Topological Spaces, Amer. Math. Soc. Transl, 78, No.2(1968), 103-18.
- [20]. M.K.R.S Veerakumar(2003) g -closed sets in topological. Allah. Math. soc., (18), 99-112