Fuzzy Almost – Open Functions

R.Saral Manjula¹ and B.Chellappa²

¹Research Scholar (Part Time-Mathematics), Manonmaniam Sundaranar University, Abishekapapti, Tirunelveli-627 012, ²Pricipal, Nachiappa Swamigal Arts and Science College, Koviloor-630 003, Tamilnadu, India.

Abstract

Let S be a fuzzy subset of a fuzzy topological space X. The fuzzy closure of S and fuzzy interior of S in X are denoted $byFcl_x(S)$ and $Fint_x(S)$ (briefly Fcl(s) &Fint(S))Fcl(S) and Fint (S) respectively. A fuzzy subset S of X is said to be fuzzy regular open (fuzzy regular closed) if Fint (Fcl(S)) = S (resp. Fcl (Fint (S) = S). A function f:X \rightarrow Y to be fuzzy almost open (briefly f.a.o.S) If for each fuzzy regular open set U of X, f (U) is fuzzy open in Y. Where X and Y fuzzy topological spaces.

A function f: $X \rightarrow Y$ to be fuzzy almost – open(briefly f.a.o.R) if for each fuzzy open set U of X, f (U) \subset Fint (Fcl (f (U)).

2.FUZZY SEMI-OPEN

A fuzzy subset S of a fuzzy topological space X is said to be fuzzy semi – open if there exists an fuzzy open set U of X such that $U \subset S \subset Fcl$ (U). The complement of a fuzzy semi – open set is called Fuzzy semi – closed.

Theorem 2.1:

A function f: $X \rightarrow Y$ is f.a.o.S if and only if for each fuzzy semi – closed set F of X, f (Fint (F)) \subset Fint (f(F)).

Proof:

Suppose that f is f.a.o.S and let F be a fuzzy semi – closed set of X. Then Fint (F) = Fint(Fcl (F)) \subset F and f (Fint (Fcl (F)) is fuzzy open in Y. Therefore, we havef (Fint (F)) \subset Fint (f (F)) conversely, let U be a fuzzy regular open set of X. Then U is fuzzy semi – closed. By hypothesis, we have f (U) = f (Fint (U)) \subset Fint (f(U)). Thus f (U) is open in Y and hence f is f.a.o.S.

Theorem 2.2:

A function f: $X \to Y$ is f.a.o.S if and only if for any fuzzy subset S of Y and any fuzzy regular closed set F of X containing $f^{-1}(S)$, there exists a fuzzy closed set G of Y containing S such that $f^{-1}(G) \subset F$.

Proof:

Suppose that f is f.a.o.S. Let $S \subset Y$ and F be a fuzzy regular closed set of X containing $f^{-1}(S)$ put G = Y - f (X-F). Since $f^{-1}(S) \subset F$, we have $S \subset G$.since f is f.a.o.S and F is fuzzy regular closed in X, G is fuzzy closed in Y. It follows from a straightforward calculation that $f^{-1}(G) \subset F$.

Conversely, let U be a fuzzy regular open set of X and put S = Y - f(U). Then X - U is a fuzzy regular closed set containing $f^{-1}(S)$. By hypothesis, there exists a fuzzy closed set G of Y containing S such that $f^{-1}(G) \subset X - U$. Thus, we have $f(U) \subset Y - G$. On the other hand we have, $f(U) = Y - S \supset Y - G$ and hence f(U) = Y - G. Consequently, f(U) is open in Y and f is f.a.o.S.

Theorem 2.3:

If a function f: $X \rightarrow Y$ is f.a.o.S and A is fuzzy regular open set of X, then the restriction f/A: $A \rightarrow Y$ is f.a.o.S.

Proof:

Let U be a fuzzy regular open set in the fuzzy subspace A. Since A is fuzzy regular open in X, so is U and hence f(U) is fuzzy open in Y. Therefore f/A is f.a.o.S.

Theorem 2.4:

Let f: X \rightarrow Y be anf.a.o.S function. If A is an fuzzy open set of X such that A= f¹(B) for some fuzzy subset B of Y,then a function $f_A: A \rightarrow B$ defined by $f_A(x) = f(x)$ all x ϵ A is f.a.o.S.

Proof:

Let U be a fuzzy regular open set in the fuzzy subspace A. Since A is fuzzy open in X, we have $U = \text{Fint}_A (\text{Fcl}_A (U)) = A \cap \text{Fint}_X (\text{Fcl}_X(U))$. Since f is f.a.o.S, f (Fint_X (Fcl_X(U))) is fuzzy open in y. Therefore $f_A (U) = B \cap f (\text{Fint}_X(\text{Fcl}_X (U)))$ is fuzzy open in the fuzzy subspace B and hence f_A is f.a.o.S.

Theorem 2.5:

Let f: X \rightarrow Y be a function and { $V_{\alpha}/\alpha \in \nabla$ } an fuzzy open cover of X. If the restriction $f/V_{\alpha}: V_{\alpha} \rightarrow Y$ is f.a.o.S for each $\alpha \in \nabla$ then f is f.a.o.S.

Proof:

Let U be a fuzzy regular open set of X. Since V_{α} is fuzzy open in X, $U \cap V_{\alpha}$ is fuzzy regular open in the fuzzy subspace V_{α} for each $\alpha \in \nabla$. Since f/V_{α} is f.a.o.S. $(f/V_{\alpha})(U \cap V_{\alpha})$ is fuzzy open in Y and hence $f(U) = \bigcup \{ (f/V_{\alpha}) \cup (V_{\alpha}) / \alpha \in \nabla \}$ is fuzzy open in Y. This shows that f is f.a.o.S.

Corollary 2.6:

Let { $V_{\alpha} / \alpha \in \nabla$ } be an fuzzy open cover of Y. A fuzzy continuous function f: X \rightarrow Y is f.a.o.S if and only if $f_{\alpha} = f / f^{1}(V_{\alpha})$: $f^{1}(V_{\alpha}) \rightarrow V_{\alpha}$ is f.a.o.S for each $\alpha \in \nabla$.

Proof:

This follows from theorem 2.4 and 2.5.

FUZZY PRE – OPEN:

A fuzzy subset S of a fuzzy topological space X is said to be fuzzy pre open if $S \subset Fint(Fcl(S))$. The complement of a fuzzy preopen set is called fuzzy pre closed

Theorem 3.1:

For a function f: $X \rightarrow Y$, then the following are equivalent:

- (a) f is f.a.o.R.
- (b) For any fuzzy subset S of Y and any fuzzy closed set F of X, containing $f^{1}(S)$, there exists a fuzzy pre closed set G of Y containing S such that $f^{1}(G) \subset F$.
- (c) For any fuzzy set B of Y, $f^1(Fcl(Fint(B))) \subset Fcl(f^1(B))$.
- (d) For any fuzzy set A of X, f (Fint (A)) \subset Fint (Fcl (f(A))).

Lemma 3.3:

A function f: $X \rightarrow Y$ is f.a.o.R if and only if each fuzzy open set V of Y, f^1 (Fcl (U)) \subset Fcl ($f^1(V)$).

Theorem 3.4:

If a function f: $X \to Y$ is f.a.o.R and B is fuzzy open in Y then $f_A: A \to B$ is f.a.o.R, where $A = f^1(B)$.

Proof

Let V be an fuzzy open set of the fuzzy subspace B. Since B is fuzzy open in Y, so is V and hence $f^{-1}(Fcl_Y(V)) \subset Fcl_X(f^{-1}(V))$ by lemma 3.3. Thus we obtain, $f_A^{-1}(Fcl_B(V)) = f^{-1}(Fcl_Y(V)) \cap A \subset Fcl_A(f_A^{-1}(V))$. This shows that f_A is f.a.o.R.

Theorem 3.5:

Let f: X \rightarrow Y be an function and { $V_{\alpha} / \alpha \in \nabla$ } an fuzzy open cover of Y.If $f_{\alpha} = f / f^{-1}$ (V_{α}): $f^{-1}(V_{\alpha}) \rightarrow V_{\alpha}$ is f.a.o.R for each $\alpha \in \nabla$ then f is f.a.o.R.

Proof

Let V be an fuzzy open set of Y and put $U_{\alpha} = f^{-1}(V_{\alpha})$ for each $\alpha \in \nabla$. Since $V \cap V_{\alpha}$ is fuzzy open in the fuzzy subspace V_{α} , by lemma 3.3 we have $f_{\alpha}^{-1}(Fcl_{\alpha} (V \cap V_{\alpha})) \subset Fcl_{\alpha} (f_{\alpha}^{-1} (V \cap V_{\alpha}))$ for each $\alpha \in \nabla$. Since V_{α} is fuzzy open in Y for each $\alpha \in \nabla$, we obtain, f⁻¹(Fcl_Y (V)) = $\bigcup f_{\alpha}^{-1}$ (Fcl_Y (V \cap V_{\alpha}) \subset \bigcup (Fcl_{\alpha} (V \cap V_{\alpha})) \subset \bigcup Fcl_{\alpha}(f_{\alpha}^{-1}(V \cap V_{\alpha})) \subset Fcl_X (f⁻¹(V)). This shows that f is f.a.o.R.

Corollary 3.6:

Let { $V_{\alpha} / \alpha \in \nabla$ } be an fuzzy open cover of Y.A function f: X \rightarrow Y is f.a.o.R if and only if f_{α} : $f^{1}(V_{\alpha}) \rightarrow V_{\alpha}$ is f.a.o.R for each $\alpha \in \nabla$

Proof

This follows from Theorem 3.4 and 3.5.

RELATIONS WITH SOME WEAK FORMS OF FUZZY CONTINUITY

A function f: $X \to Y$ is said to be fuzzy almost – continuous (f.a.c.S) if for each $x \in X$ and each fuzzy open neighborhood V of f(x), there exists an fuzzy open neighborhood U of X such that f (U) \subset Fint (Fcl (V)) (resp. f(Fcl (U) \subset Fcl (V), f(U) \subset Fcl (V). It has been fuzzy continuous implies f.a.c.S implies θ -fuzzy continuous implies fuzzy weakly continuous. A function f: X \rightarrow Y is said to be fuzzy almost continuous (f.a.c.H) if for each x \in X and each fuzzy open neighborhood V of f (x), Fcl (f⁻¹(V)) is a neighborhood of x.

A function f: $X \rightarrow Y$ is said to be fuzzy semi – continuous (f.s.c) if for each fuzzy open set V of Y, $f^{1}(V)$ is fuzzy semi – open in X.

Example 4.1:

Let X be the fuzzy set of real numbers and σ the fuzzy topology for X. Let $Y = \{a, b\}$ and $\tau = \{\phi, \{a\}, Y\}$. Define a function f: $(X, \sigma) \rightarrow (Y, \tau)$ as follows f (x) = a if x is rational and f (x) = b if x is irrational. Then f is f.a.c.S but not f.s.c.

Theorem 4.2:

If a function f: $X \rightarrow Y$ is f.a.o.S and f.a.c.H then f is f.a.o.R.

Proof

A function f: $X \to Y$ is f.a.c.Hif and only if f (Fcl (U)) \subset Fcl (f(U)) for all fuzzy open set U of X. Let U be an fuzzy open set of X. Then we have f (Fcl (U)) \subset Fcl (f (U)). Since f is f.a.o.S,f (Fint (Fcl (U))) is fuzzy open in Y and hence f (U) \subset f (Fint (Fcl (U))) \subset Fint (Fcl (f (U))). This shows that f is f.a.o.R.

Theorem 4.3:

If a function f: $X \rightarrow Y$ is f.a.o.S and f.s.c.Sthen f is f.a.o.R.

Proof

By using lemma 3.3, we shall show that f is f.a.o.R. Let V be an fuzzy open set of Y. Then $f^{1}(V)$ is fuzzy semi – open in X and hence, $f^{1}(V) \subset Fcl$ (Fint $(f^{1}(V))$). Since f is f.a.o.S and Fcl(Fint $(f^{1}(V))$) is fuzzy regular closed in X. By theorem 3.2 there exists a fuzzy closed set F of Y containing V such that $f^{1}(F) \subset Fcl(Fint (f^{1}(v)))$. Therefore we obtain $f^{1}(Fcl (V)) \subset Fcl(f^{1}(V))$.

Example 4.4:

Shows that an f.a.o.S and f.a.c function is not necessarily f.a.o.R on the other hand, a fuzzy continuous f.a.o.R function is not necessarily f.a.o.S, as the following examples shows.

Example: Let $X = \{a,b,c\}$ and $\tau = \{\phi, \{a\}, \{b,c\}, X\}$. Let σ be the discrete fuzzy topology for X and f: $(X, \sigma) \rightarrow (X, \tau)$ be the identity function. Then f is fuzzy continuous and f.a.o.R, but is not f.a.o.S. A function f: $X \rightarrow Y$ is fuzzy weakly continuous then, Fcl $(f^{-1}(V)) \subset f^{-1}(Fcl(V))$ for each fuzzy open set V of Y and that the converse is true if f is f.a.c.H.

Theorem 4.5:

A function $f:X \to Y$ is θ – fuzzy continuous (f.a.c.S) if and only if for each open set V of y $Fcl_{\theta}(f^{1}(V)) \subset f^{1}(Fcl(V))$.

Proof

Let $x \in X$ and V be an fuzzy open set containing f(x). Since Y-Fcl (v) is fuzzy open in Y. By hypothesis we have $Fcl_{\theta}(X-f^{1}(Fcl (V))) \subset f^{1}(Y-Fint (Fcl (V)))$ and hence $x \in f^{1}(V) \subset X-Fcl_{\theta} (X-f^{1}(Fcl (V)))$. Therefore, there exists an fuzzy open set U containing x such that Fcl (U) $\subset f^{1}(Fcl (v))$. Hence f (Fcl(U) \subset Fcl (V). This completes the proof.

Corollary 4.6:

Let $f:X \to Y$ be an f.a.o.R function. Then f is θ – fuzzy continuous if and only ifFcl_{θ}(f¹(V)) \subset f¹(Fcl (V)) for each fuzzy open set V of Y

Proof

This is a consequence of lemma 3.3 and theorem 4.5.

References

1. K.K.Azad, On fuzzy semi continuity, fuzzy almost continuity, and fuzzy weakly continuity, J.Math. Anal. Appl. 82 (1981), 14-32

R.Saral Manjula and B.Chellappa