$\hat{\alpha}g$ Filters and $\hat{\alpha}g$ Filter bases

¹V.Senthilkumaran, ²R.Krishnakumar, ³Y.Palaniappan^{*}

¹Associate Professor of Mathematics, Arignar Anna Government Arts College, Musiri, Tamilnadu, India.E.mail vsenthil1966@gmail.com
²Assistant Professor of Mathematics, UrumuDhanalakshmi College, Kattur, Trichy, Tamilnadu India E.Mail srksacet@yahoo.co.in
³Associate Professor of Mathematics(Retd), Arignar Anna Government Arts College, Musiri, Tamilnadu, India.E.mail palaniappany48@gmail.com.
*Corresponding author

Abstract

In the present paper, we introduce $\hat{\alpha}g$ filters and $\hat{\alpha}g$ filter bases and study their properties

Keywords: âg open sets, âg filters, âg filter bases

AMS subject classification: 54D05, 54A10, 54B05, 54G05

1.Introduction.

Throughout the present paper (X, τ) denotes a topological space in which no separation axioms are assumed. (X, τ) will be simply denoted by X. Levine [3] initiated semiopen sets in topological spaces.Njastad [5] introduced α – open sets in general topology. Senthilkumaran etal [6] introduced $\hat{\alpha}$ generalized closed sets. In section 3, $\hat{\alpha}$ g filter is defined and different $\hat{\alpha}$ g filters are derived. In section 4, $\hat{\alpha}$ g filters are compared. In section 6, $\hat{\alpha}$ g filter base is defined and derived its properties.

2.Preliminaries

Definition 2.1: A subset A of a topological space X is said to be

- 1) pre open if A \subset int cl A and pre closed if cl int A \subset A
- 2) regular open if A = int cl A and regular closed if A = cl int A
- 3) semi open if $A \subset cl$ int A and semiclosed if int $cl A \subset A$

4) α – open if A \subset int cl int A and α – closed if cl int cl A \subset A.

Definition 2.2: A subset A of a topological space X is called $\hat{\alpha}$ generalized closed set[6] ($\hat{\alpha}$ g closed)

If int cl int $A \subset U$, whenever $A \subset U$ and U is open in X.

The complement of $\hat{\alpha}g$ closed set in X is $\hat{\alpha}g$ open in X.

The intersection of two $\hat{\alpha}g$ open sets need not be $\hat{\alpha}g$ open.

In what follows, we assume finite intersection of $\hat{\alpha}g$ open sets is $\hat{\alpha}g$ open.

3. α̂g Filters

Definition 3.1: Let X be a topological space. A $\hat{\alpha}g$ filter on X is a non empty family **F** of $\hat{\alpha}g$ open subsets of X satisfying the following axioms.

- 1: ¢**∉F**
- 2: If $F \in \mathbf{F}$ and H is $\hat{\alpha}g$ open such that $H \supset F$, then $H \in \mathbf{F}$
- **3:** If $F \in F$ and $H \in F$, then $F \cap H \in F$.

Remark 3.2:

- (1) If **F** is a α̂g filter, then **F** satisfies FIP
- (2) If $F \in \mathbf{F}$ then $X F \notin \mathbf{F}$
- (3) There exists no $\hat{\alpha}g$ filter on ϕ .

Definition 3.3: A $\hat{\alpha}g$ filter **F** on a topological space X is said to be $\hat{\alpha}g$ free if and only if $\{F: F \in F\} = \phi$ and $\hat{\alpha}g$ fixed if and only if $\{F: F \in F\} \neq \phi$

Definition 3.4: Let X be a topological space. Then $\{X\}$ is always a $\hat{\alpha}g$ filter on X called the indiscrete $\hat{\alpha}g$ filter.

Theorem 3.5: Let X be a topological space and $x_0 \in X$. The family $\mathbf{F} = \{F: x_0 \in F \text{ and } F \text{ is } \hat{\alpha}g \text{ open}\}$ is a $\hat{\alpha}g$ filter on X called the discrete $\hat{\alpha}g$ filter.

Proof: As $\{X\} \in F$, F is non empty, Since $x_0 \in F$, for every $F \in F$, no member of F is empty and so $\phi \notin F$

The verification of conditions 2 and 3 are obvious.

Theorem 3.6: Let X be a topological space and let F_0 be a non empty $\hat{\alpha}g$ open subset of X.

Then \mathbf{F} = {F: F \supset F₀ and F is $\hat{\alpha}$ g open} is a $\hat{\alpha}$ g filter on X.

Proof: Obvious

Theorem 3.7: Let X be a topological space with infinite number of elements.

112

Then **F** = {F: X - F is finite and F is $\hat{\alpha}g$ open} is a $\hat{\alpha}g$ filter on X called the $\hat{\alpha}g$ cofinite filter.

Proof:As X-X = ϕ is finite, X \in F and hence **F** is nonempty. Let F be $\hat{\alpha}g$ open and X- F is finite. Then F is Infinite and hence no member of **F** is empty. So $\phi \notin \mathbf{F}$. Let F \in **F** and H be $\hat{\alpha}g$ open such that H \supset F.

Then $H \in F$.Let F, $H \in F \times - (F \cap H) = (X - F) \cup (X - H)$ is finite. Hence $F \cap H \in F$. This completes the proof.

Theorem 3.8: Let X be a topological space and let N(x) be the collection of all $\hat{\alpha}g$ open neighbourhoods of a point $x \in X$. Then N(x) is a $\hat{\alpha}g$ filter on X called the $\hat{\alpha}g$ open neighbourhood filter of X.

Proof:Obivious.

4. Comparison of $\hat{\alpha}g$ filters

Definition 4.1: Let **F** and **F'** be two $\hat{\alpha}g$ filters on the same topological space X. Then **F** is said to be finer than **F'** if and only if **F'** \subset **F**. If **F** \neq **F'**, then **F** is said to be strictly finer than **F'**.

Theorem 4.2: Let X be a topological space with infinite number of elements and let **F** be a $\hat{\alpha}g$ filter on X such that $\cap \{F: F \in F\} = \phi$. Then **F** is finer than $\hat{\alpha}g$ cofinite filter on X.

Proof: Let **C** be the $\hat{\alpha}g$ cofinite filter on X. Let $\mathbb{C}\not\subset \mathbf{F}$. Then, there exists $C \in \mathbb{C}$ such that $C \notin \mathbf{F}$. Then X – C is finite. Let X- C = { $x_1, x_2, ..., x_n$ }. Now \cap { \mathbf{F} : $\mathbf{F} \in \mathbf{F}$ } = ϕ . Therefore, there exists $\mathbf{F}_i \in \mathbf{F}(i = 1, 2, 3, ..., n)$, such that $x_i \notin \mathbf{F}_i$. Since **F** is a $\hat{\alpha}g$ filter, $\mathbf{G} = \cap \{\mathbf{F}_i: 1 \le i \le n\} \in \mathbf{F}$. G will not contain any element of { $x_1, x_2, x_3, ...x_n$]. Hence X – G \supset X – C. So G \subset C. As **F** is a $\hat{\alpha}g$ filter C \supset G implies $C \in \mathbf{F}$. This is a contradiction. Hence **F** is finer than the $\hat{\alpha}g$ cofinite filter.

Theorem 4.3: Let{ \mathbf{F}_{λ} : $\lambda \in \cap$ } be any nonempty family of $\hat{\alpha}g$ filters on a nonempty topological space X. Then the set $\mathbf{F} = \cap$ { \mathbf{F}_{λ} : $\lambda \in \cap$ } is also a $\hat{\alpha}g$ filter on X.

Proof: Obvious.

5. âg Filters generated by collection of sets

Theorem 5.1: Let **A** be any nonvoid family of $\hat{\alpha}g$ open subsets of a topological space X. Then, there exists a $\hat{\alpha}g$ filter on X containing **A** if and only if **A** has the FIP. **Proof:** Suppose **A** has the FIP. We have to prove there exists a $\hat{\alpha}g$ filter on X

containing A.

Let **B** = {B: B is the intersection of a finite subfamily of **A**} Since **A** has the FIP, no member of **B** is empty. Hence $\phi \notin \mathbf{B}$. Let **F** = {F: F contains a member of **B** and F is $\hat{\alpha}g$ open}

Evidently $\mathbf{F} \supset \mathbf{A}$. Let us prove \mathbf{F} is a $\hat{\alpha}g$ filter on X.

As $\phi \notin \mathbf{B}$ and every member of **F** is a superset of some other member of **B**, it follows that $\phi \notin \mathbf{F}$.

The verification of other two conditions are straight forward. Hence ${\bm F}$ is a $\hat{\alpha}g$ filter on

X containing **A**. Conversely, let **F** be a $\hat{\alpha}$ g filter on X containing **A**. Then **F** \supset **B**.

Hence a necessary condition for the existence of such a $\hat\alpha g$ filter is that $\varphi \not\in B$, that is **A** must have the FIP.

Corollary 5.2: The above $\hat{\alpha}g$ filter **F** is the smallest $\hat{\alpha}g$ filter of the ordered family of all $\hat{\alpha}g$ filter on X containing **A**.

Definition 5.3: The $\hat{\alpha}g$ filter defined in the above theorem is said to be generated by **A** and **A** is said to be $\hat{\alpha}g$ sub base of **F**.

Remark 5.4: For **A** to be a sub base, it is necessary and sufficient that **A** has the FIP.

Theorem 5.5: Let **F** be a $\hat{\alpha}g$ filter on a topological space X and let A be a $\hat{\alpha}g$ open subset of X. Then there exists a $\hat{\alpha}g$ filter **F'** finer than **F** such that $A \in \mathbf{F'}$ if and only if $A \cap F \neq \phi$, for every $F \in \mathbf{F}$.

Proof: LetA \cap F $\neq \phi$, for every F \in **F**.

Let $A = \{A \cap F: F \in F\}$. Then A has F IP as follows: Let $\{A \cap F_i: 1 \le i \le n\}$ be any finite subfamily of A and let $F = \cap\{F_i: 1 \le i \le n\}$.Since each F_i is a member of F, F is also a member of F.

Hence $\cap \{A \cap F_i: 1 \le i \le n\} = A \cap \{\cap \{F_i: 1 \le i \le n\}\} = A \cap \neq \phi$

Then, by the preceding theorem, there exists a $\hat{\alpha}g$ filter **F**' on X containing **A**. Let us prove **F** \subset **F**'.

Let $F \in F$. A $\cap F \in A$. As **F'** contains **A**, it follows A $\cap F \in F'$.

Since $F \supset A \cap F$ and **F'** is a $\hat{\alpha}g$ filter, $F \in \mathbf{F'}$ Hence $\mathbf{F} \subset \mathbf{F'}$.

Conversely, let \mathbf{F}^{I} be a $\hat{\alpha}g$ filter on X such that $A \in \mathbf{F}^{\prime}$ and $F \subset \mathbf{F}^{\prime}$. Let $F \in \mathbf{F}$. Hence $F \in \mathbf{F}^{I}$. As $A \in \mathbf{F}^{I}$, $A \cap F \neq \phi$, \mathbf{F}^{\prime} being $\hat{\alpha}g$ filter.

Theorem5.6: Let **F** be a $\hat{\alpha}g$ filter on a topological space X and A be a $\hat{\alpha}g$ open subset of X such that $A \notin F$.

Then X-A meets every member of **F**. Hence there exists a $\hat{\alpha}g$ filter **F'** finer than **F** and not containing A.

114

Proof: Let $F \in F$ and $X \cdot A \cap F = \phi$. But, then $F \subset A$ and hence $A \in F$, a contradiction. Hence $(X \cdot A) \cap F \neq \phi$, that is, X-A meets every member of **F**. Then, by the preceding theorem, there exists a filter **F'** finer than **F** such that $X \cdot A \in F'$, that is $A \notin F'$.

6. α̂g Filter base

Definition 6.1: Let X be a topological space. A $\hat{\alpha}g$ filter base on X is a non empty family **B** of $\hat{\alpha}g$ open subsets of X satisfying the following axioms

- i) φ∉**B**
- ii) If F, $H \in B$, then there exists $G \in B$ such that $G \subset F \cap H$

Remark 6.2:

- i) **B** has the FIP
- ii) Every âg filter is a âg filter base.

Theorem 6.3: The family $B = \{A\}$ where A is any non void $\hat{\alpha}g$ open subset of a topological space X is a $\hat{\alpha}g$ filter base on X.

Proof: Straight forward.

Definition 6.4: Let X be a topological space. A nonempty collection $\mathbf{B}(x)$ of $\hat{\alpha}g$ open neighbourhoods of x is called a $\hat{\alpha}g$ base for the $\hat{\alpha}g$ open neighbourhood system of x if and only if for every $\hat{\alpha}g$ open neighbourhood N of x, there exists a $B \in \mathbf{B}$ such that $B \subset N$. We say $\mathbf{B}(x)$ is a $\hat{\alpha}g$ open local base at x.

Theorem 6.5: Let X be a topological space and let $x \in X$. Then the $\hat{\alpha}g$ open local base B(x) at x is a $\hat{\alpha}g$ filter base at x.

Proof:Obivious

Theorem 6.6: Let **B** be a family of $\hat{\alpha}g$ open subsets of a topological space X. Then **B** is a $\hat{\alpha}g$ filter base on X if and only if the family **F** consisting of all those $\hat{\alpha}g$ open subsets of X, which contain a member of **B** is a $\hat{\alpha}g$ filter on X.

Proof:B is nonempty if and only if **F** is non empty. Let **F** be a $\hat{\alpha}g$ filter on X. Then $\phi \notin \mathbf{F}$. As**B** \subset **F**, we have $\phi \notin \mathbf{B}$. Let F, H \in **B**. Hence F, H \in **F**. As **F** is a $\hat{\alpha}g$ filter, F \cap H \in **F**. By the definition of **F**, there exists G \in **B** such that G \subset F \cap H. Hence **B** is a $\hat{\alpha}g$ filter base. Conversely, let **B** be a $\hat{\alpha}g$ filter base.

Let $\mathbf{F} = \{F: F \supset B, B \in \mathbf{B} \text{ and } F \text{ is } \hat{\alpha}g \text{ open}\}$. As \mathbf{B} is a $\hat{\alpha}g$ filter base $\phi \notin \mathbf{B}$. Hence $\phi \notin \mathbf{F}$.Let $F \in \mathbf{F}$ and H be $\hat{\alpha}g$ open such that $H \supset F$. By the definition of \mathbf{F} , there exists $G \in \mathbf{B}$ such that $F \supset G$. Hence $H \in \mathbf{F}$. Finally, let $F, H \in \mathbf{F}$. Then, there exists $G, K \in \mathbf{B}$ such that $F \supset G$,

 $H \supset K$. As **B** is a $\hat{\alpha}g$ filter base, there exists $L \in \mathbf{B}$ such that $L \subset G \cap K$. Hence $L \subset F \cap H$. This completes the proof.

Corollary6.7: Let **F** be a $\hat{\alpha}g$ filter on a topological space X. Then the family **F'** which consists of those $\hat{\alpha}g$ open subsets of X which contains a member of **F** is also a $\hat{\alpha}g$ filter on X.

Theorem 6.8: Let **A** be any nonvoid family of $\hat{\alpha}g$ open subsets of a topological space X. Then there exists a $\hat{\alpha}g$ filter base on X containing **A** if and only if **A** has the FIP.

Proof: Let **A** have the FIP

Let **B** = {B: B is the intersection of finite sub family of A}. Let us show **B** is a $\hat{\alpha}g$ filter base on X.

Clearly $B \supset A$. As A is nonvoid, B is so. Since A has the FIP, $\phi \notin B$.

Let F, $H \in B$. F \cap H is the intersection of finite sub family of **A**. Hence F \cap H \in B. So, **B** is a $\hat{\alpha}g$ filter base.

Conversely, let **B** be a $\hat{\alpha}$ g filter base on X containing **A**. $\phi \notin$ **B**.

The intersection of every finite subfamily of **B** contains a member of **B**. In particular the intersection of every finite subfamily of **A** contains a member of **B**. So, **A** has the FIP.

Remark 6.9: The $\hat{\alpha}g$ filter base **B** defined in the above theorem is said to be generated by **A**.

Definition 6.10: Let **B** be a $\hat{\alpha}g$ filter base on a topological space X. Then a $\hat{\alpha}g$ filter **F** consisting of all those $\hat{\alpha}g$ open subsets of X which contain a member of **B** is called a $\hat{\alpha}g$ filter generated by **B**.

Such a $\hat{\alpha}g$ filter always exists in view of theorem 6.6.

Definition 6.11: Two $\hat{\alpha}g$ filter bases **B**₁ And **B**₂ on a topological space X are said to be equivalent if and only if they generate the same $\hat{\alpha}g$ filter on X.

Definition 6.12: Let **F** be a $\hat{\alpha}$ g filter on a topological space X. Then a subfamily **B** of **F** is called a $\hat{\alpha}$ g base of **F** if and only if every member of **F** contains a member of **B**.

Remark 6.13:

- A collection B of âg open subsets of a topological space X is a âg filter base on X if and only if B is a âg base of some âg filter on X.
- ii) If A is a άg subbase of a άg filter F, then the family B of all finite intersections of members of A is a άg base for F.

Theorem 6.14: Let X be a topological space and N(x) be the $\hat{\alpha}g$ open neighbourhood filter at x.

Then a $\hat{\alpha}g$ open local base **B**(x) at x is a $\hat{\alpha}g$ base of the $\hat{\alpha}g$ filter N(x).

Proof: Stright forward.

Theorem 6.15: On a topological space X, a $\hat{\alpha}g$ filter **F'** with $\hat{\alpha}g$ base **B'** is finer than a $\hat{\alpha}g$ filter **F** with $\hat{\alpha}g$ base **B** if and only if every member of **B** contains a member of **B'**.

Proof: Let every member of **B** contain a member of **B'**. Let $F \in F$. Then F contains a membe of **B**, say B. By hypothesis, there exists $B' \in B'$ such that $B' \subset B$. Hence $F \supset B'$. So $F \in F'$.

Conversely, let $\mathbf{F} \subset \mathbf{F}'$. Let $B \in \mathbf{B}$. Then $B \in \mathbf{F} \subset \mathbf{F}'$. There exists $B' \in \mathbf{B}'$ such that $B' \subset B$.

Theoerm6.16: Two $\hat{\alpha}g$ filter bases **B** and **B'** on a topological space X are equivalent if and only if every member of **B** contains a member of **B'** and every member of **B'** contains a member of **B**.

Proof: This theorem is an immediate corollary of the preceding theorem.

References

- [1] Andrijevic, D, Semi pre open sets, Mat vesnik 38 (1986) 24 32.
- [2] Dontchev, J, On generelised semi pre open sets, MemFac.Sci.Kochi Univ.SerA.Math 16 (1995), 35 48.
- [3] Levine, N, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36 – 41.
- [4] Levine, N, Generalised closed sets in topology, Rend.Circ.Mat.Palermo 19 (1970) 89-96.
- [5] Njastad, O, On Some classes of nearly open sets, Pacific J. Math. 15 (1965) 961 - 970.
- [6] Senthtilkumaran.V, Krishnakumar. R and Palaniappan.Y, On $\hat{\alpha}$ generalized closed sets, Intl.J.of Math. Archive 5(2), 2014, 187-191.

V.Senthilkumaran et al

118