Fuzzy Semi Continuity and Fuzzy Weak-Continuity

B.Chellappa¹ and **R.**Saral Manjula²

¹Associate Professor, Alagappa Govt. Arts College, Karaikudi-630 003, Tamilnadu, India. ²Research Scholar (Part Time-Mathematics), Manonmaniam Sundaranar University, Abishekapapti, Tirunelveli-627 012, Tamilnadu, India.

Abstract

A function f of a fuzzy topological space X into a fuzzy topological space Y to be fuzzy weakly-continuous if for each $x \in X$ and each fuzzy open neighborhood V of f(x) there exists a fuzzy open neighborhood U of x such that $f(U) \subset Fcl(V)$. where Fcl/(V) denotes the fuzzy closure of V.

Definition: (a)

A fuzzy subset S of a fuzzy topological space X is said to be fuzzy semi-open if there exists a fuzzy open set U of X such that $U \subseteq S \subseteq Fcl(U)$. The family of all fuzzy semi-open sets in X is denoted by FSO (X).

Definition: (b)

A function f: $X \rightarrow Y$ to be fuzzy semi-continuous if $f^1(V) \in FSO(X)$ for every fuzzy open set V of Y. It has been known that the fuzzy semi-continuity is equivalent to the fuzzy quasi-continuity.

Definition: (c)

A function f: X \rightarrow Y to be fuzzy semi-open if $f(U) \in$ FSO (Y) for every fuzzy open set of U of X.

Definition: (d)

A function f: $X \rightarrow Y$ to be fuzzy irresolute (resp. fuzzy pre-semi-open) if for each $V \in$ FSO (Y) (resp. U \in FSO (X)), f⁻¹ (V) \in FSO (X) (resp f (U)) \in FSO (Y)).

The purpose of the present paper is to investigate the interrelation among the fuzzy weak-continuity, the fuzzy semi-continuity and some fuzzy weak forms of fuzzy open functions.

A fuzzy semi-continuous function is fuzzy irresolute if it is either fuzzy weaklyopen injective or fuzzy almost-open.

A fuzzy semi-open function is fuzzy pre-semi-open if it is either fuzzy weaklycontinuous or fuzzy almost-continuous.

A fuzzy semi-continuous function is fuzzy weakly-continuous if the domain is extremely disconnected.

1.FUZZY IRRESOLUTE FUNCTIONS

Definition 1:1

A function f: $X \rightarrow Y$ is said to be fuzzy weakly-open if $f(\cup) \subset Int(f(Fcl(U)))$ for every fuzzy open set \cup of X.

Definition 1:2

A function f: $X \rightarrow Y$ is said to be fuzzy almost-open for every fuzzy regular open set \cup of X, f(U) is fuzzy open in V.

Definition 1:3

A function f: $X \rightarrow Y$ is said to be fuzzy almost-open if $f^{1}(Fcl(V)) \subset Fcl(f^{1}(V))$ for every fuzzy open set V of Y.

Lemma 1:4

If f: X \rightarrow Y is a fuzzy almost open function then it is fuzzy weakly-open

Proof:

Let U be a fuzzy open set of X. Since f is fuzzy almost open, f (Int (Fcl(U))) is fuzzy open in Y and hence $f(U) \subset f(Int (Fcl(U))) \subset Int (f(Fcl (U))).$ The converse to Lemma 1:4 is not necessarily true.

Example:

Let $X = \{a, b, c, d\} \& \sigma = \{X, \{a, b, d\}, \{a, b\} \{d\}, 0\}.$ Let $Y = \{x, y, z\} \& \tau = \{Y, \{x, y\}, \{y, z\}, \{y\}, \{z\}, 0\}.$ Let f: $(X, \sigma) \rightarrow (Y, \tau)$ he a function defined as follows f(a) = x f(b)=z, f(c) = f(d)=y. Then f is fuzzy weakly-open but it is nut fuzzy

almost open.

Definition 1:5

A function f: $X \rightarrow Y$ is said to be fuzzy somewhat continuous if for each fuzzy open V of Y with $f^{1}(V) \neq 0$ there exists a fuzzy open set U of X such that $0 \neq U \subset f^{1}(V)$.

Theorem: 1:6

If f: X \rightarrow Y is a fuzzy weakly-open somewhat continuous injection then it is fuzzy irresolute.

Proof:

Let $V \in FSO(Y)$ and $x \in f^1(V)$ Put y = f(x) and let U be any fuzzy open neighborhood of x, since f is fuzzy weakly-open, we have

 $y \in f(U) \cap V \subset Int (f (Fcl (U))) \cap V \in FSO (Y).$ There exists a fuzzy open set G such that

 $0 \neq G \subset Int (f(Fcl(U))) \cap V$. Since f is Fuzzy some what continuous and $f^{1}(G) \neq G \subset Int (f(Fcl(U))) \cap V$. 0, there exists an fuzzy open set W of X such that $0 \neq W \subset f^{-1}(G)$.

Therefore, we obtain $W \subseteq Fcl(U) \cap f^1(V)$ and hence $W \subseteq Fcl(U) \cap Int(f^1(V))$ because f is injective. Thus, we have $0 \neq Fcl(U) \cap Int(f^1(V))$ and hence $0 \neq U \cap Int (f^{1}(V))$. This shows that $x \in Fcl (Int (f^{1}(V)))$ and $f^{1}(V) \in FSO (X)$.

Theorem 1.7

If a function f: $X \rightarrow Y$ is a fuzzy almost open and fuzzy semi-continuous then it is fuzzy irresolute.

Proof:

Let $V \in FSO(Y)$. Then there exists a fuzzy open set G of Y such that $G \subset V \subset Fcl$ (G), hence $f^1(G) \subset f^1(V) \subset f^1(Fcl(G))$. Since f is fuzzy semi-continuous, $f^1(G) \in FSO(X)$ and hence $f^1(G) \subset Fcl(Int(f^1(G)))$. Now, Put F= Y-f(X-Fcl(Int($f^1(G)$))). Then F is fuzzy closed in Y because f is

Now, Put $F= Y \cdot f(X \cdot Fcl (Int (f^{-1} (G))))$. Then F is fuzzy closed in Y because f is fuzzy almost open and Fcl (Int (f^{-1} (G))) is fuzzy regular closed in X. By a straight forward calculation we obtain $G \subset F$ and $f^{-1}(F) \subset Fcl (Int (f^{-1}(G)))$.

Therefore, we have $f^{1}(Fcl(G)) \subset Fcl(f^{1'}(G))$.

Since $f^{-1}(G) \in FSO(X)$. we obtain $f^{-1}(V) \in FSO(X)$.

Lemma 1.8:

If a fuzzy topological space X is extremely disconnected then Fcl (U) =U for every U \in FSO (X).

Proof:

In general, we have $S \subset Fcl(S)$ for every fuzzy subset S of X. Thus we shall Show that $U \supset Fcl(U)$ for each $U \in FSO(X)$.

Let $0 \neq U \in FSO(X)$ and $x \notin U$, then there exists a $V \in FSO(X)$ such that $x \in V$, & $V \cap U=0$; hence Int (V) \cap Int (U) = 0. Since X is extremely disconnected, we have Fcl (Int (V)) \cap Fcl (Int (U))=0Therefore, we have $x \notin$ Fcl (Int(U))=Fcl (U).

Theorem: 1:9

If a fuzzy topological space Y is extremally disconnected and a function f: $X \rightarrow Y$ is fuzzy semi-open fuzzy semi-continuous then f is fuzzy irresolute.

Proof:

Let $V \in FSO(Y)$. There exists a fuzzy open set G of Y such that $G \subset V \subset Fcl(G)$, hence $f^{1}(G) \subset f^{1}(V) \subset f^{1}(Fcl(G))$. Since Y is extremally disconnected, we have G = Fcl(G) by lemma 1.8, since f is fuzzy semi-open then $f^{1}(G) \subset Fcl(f^{1}(G))$. Therefore we obtain $f^{1}(Fcl(G)) \subset Fcl(f^{1}(G))$. Since f is fuzzy semi-continuous, $f^{1}(G) \in FSO(X)$ and hence $f^{1}(V) \in FSO(X)$.

2. FUZZY PRE-SEMI-OPEN FUNCTIONS

Definition: 2:1

A function f: $X \rightarrow Y$ is said to be fuzzy almost-continuous if for each $x \in X$ and each fuzzy neighborhood V of f(x), Fcl (f¹(V)) is a fuzzy neighborhood of x.

Definition: 2:2

A function f: $X \rightarrow Y$ is said to be some what fuzzy open if for each non empty fuzzy open set U of X, there exists a fuzzy open set V of Y such that $0 \neq V \subset f(U)$.

Theorem 2.3

If a function f: $X \rightarrow Y$ is fuzzy weakly-continuous somewhat fuzzy open, then it is fuzzy pre semi-open.

Proof:

Let $A \in FSO(X)$ and $y \in f(A)$. Let Vbe any fuzzy open neighborhood of y. There exists $x \in A$ such that y = f(x). Since f is fuzzy weakly-continuous, there exists a fuzzy open neighborhood U of x such that $f(U) \subset Fcl(V)$.

Since $x \in U \cap A \in FSO(X)$ there exists a fuzzy open set W of X such that $0 \neq W \subset U \cap A$. Moreover, Since f is fuzzy some what fuzzy open, there exists a fuzzy open set G of Y such that $0 \neq G \subset f(W)$, hence $G \subset Fcl(V) \cap (f(A))$. Therefore, we have $G \subset Fcl(V) \cap Int(f(A))$ and hence $V \cap Int(f(A)) \neq 0$.

This shows that $y \in Fcl$ (Int (f(A))) and hence $f(A) \subset Fcl$ (Int (f(A))). Consequently we obtain $f(A) \in FSO$ (Y).

Corollary: 2.4

Every Fuzzy Weakly-continuous fuzzy semi-open function is fuzzy pre-semi open.

Proof:

Since every fuzzy semi-open function is somewhat fuzzy open, this is an immediate consequence of Theorem 2:3.

Theorem 2:5

If a function f: $X \rightarrow Y$ is fuzzy almost-continuous fuzzy semi open then it is fuzzy presemi-open.

Proof:

Let $U \in FSO(X)$. There exists a fuzzy open set G of X such that $G \subset U \subset Fcl(G)$. Since f is fuzzy almost-continuous, we have $f(Fcl(G) \subset Fcl(f(G))$ and hence $f(G) \subset f(U) \subset Fcl(f(G))$. Since f is fuzzy semi-open, we obtain $f(G) \in FSO(Y)$ and $f(U) \in FSO(Y)$.

Theorem 2.6

If a fuzzy topological space X is extremally disconnected and a function f: $X \rightarrow Y$ is fuzzy semi-continuous fuzzy semi-open, then f is fuzzy pre-semi-open.

Proof:

Let $U \in FSO(X)$. There exists a fuzzy open set G of X such that $G \subset U \subset Fcl(G)$ Since X is extremally disconnected. We have Fcl (G) =G by lemma 1.8 since f is fuzzy semi-continuous, we obtain $f(G) \subset Fcl(f(G))$ and hence $f(G) \subset f(U) \subset Fcl(f(G))$. Since f is fuzzy semi-open, we have $f(G) \in FSO(Y)$ and $F(U) \in FSO(Y)$.

Example: 2:7

Let X=Y = {a, b,c,d} σ = { X, {a,b}, {a}, {b}, o} and τ = {Y, {b,c,d}, {a,b} {a}, {b}, 0}

Let f: $(X, \sigma) \rightarrow (Y, \tau)$ be the identify function. Then f is fuzzy open and fuzzy semi-continuous but it is not fuzzy pre-semi-open.

62