Nilpotent Semirings

Dr. V. Vasu, B. Kumara Swamy Achary and Prof. K. Rama Krishna Prasad

Department of Mathematics, S.V. University, Tirupati vasuvaralakshmi@gmail.com, Acharykumaraswamy44@gmail.com

ABSTRACT:

This paper contains the nilpotent semirings are characterized by centers of a semiring. So we first give some elementary results on successive centers of a semiring.

Keywords: Semiring, sub Semiring, normal semiring, normal sub semiring, nil potent semiring,

1. Introduction:

1. 1. Definition:

Let S be a semiring. Consider the center Z(S) of S. We denote Z(S) by $Z_1(S)$ and call it as the first center of S

We know that $Z_1(S) = (Z(S))$ is a normal subsemiring of S.

Consider the quotient semiring $S/Z_1(S)$ and this center $ZS/Z_1(S)$ Again this is a normals subsemiring of $S/Z_1(S)$ So.

 $Z\left(S/Z_{1}\left(S\right)\right) = Z_{2}\left(S\right)/Z_{1}\left(S\right)$

For some normal subsemiring $Z_2(S)$ of S containing $Z_1(S)$ We call $Z_2(S)$ as the second center of S.

Again consider $S/Z_2(S)$ and its center $Z(S/Z_2(S))$ which is a normal subsemiring of $S(Z_2(S))$ We obtain a normal subsemiring $Z_3(S)$ of S containing $Z_2(S)$ such that

$$Z(S/Z_2(S)) = Z_3(S)/Z_2(S)$$

Here $Z_1(S) \subset Z_2(S) \subset Z_3(S)$

 $Z_3(S)$ is called the third center of S.

Preceding in this way we obtain nth center $Z_n(S)$ of S which is given by

 $Z_n(S)/Z_{n-1}(S) = Z(S/Z_{n-1}(S))$ The successive centers of S are such that $Z(S) = Z_1(S) \subset Z_2(S) \subset \dots \subset Z_n(S)C$

Note:

The upper found for this series of successive centers is S.

1.2 Definition : (Nilpotent Semiring):

A semiring S is said to be nil potent if $Z_m(S) = S$, for S some positive integer m,

where $Z_n(S)$ is the nth center of S, which is a normal sub semiring of G such that

 $Z_n(S)/Z_{n-1}(S) = Z(S/Z_{n-1}(S)), n = 1, 2....$

The smallest positive integer m such that $Z_m(S) = S$ is called the class of nipotency of G.

1. Example:

Let S be an abelian semiring. Then Z(S) = S or $Z_1(S) = S$ So S is nilpotent

That is, every abelian semiring is nilpotent

1. Remark: Characterization of Zn(S):

Let us find the elements of $Z_n(S)$. By the definition of $Z_n(S)$, we have that $Z_n(S)$ is a normal subsemiring of S such that

$$Z_{n}(S)/Z_{n-1}(S) = Z(S/Z_{n-1}(S))$$

Thus

$$xZ_{n}(S) \Leftrightarrow xz_{n-1}(S) \in Z(S/Z_{n-1}(S))$$

$$\Leftrightarrow xZ_{n-1}(S) yZ_{n-1}(S) = yZ_{n-1}(S) xZ_{n-1}(S) \text{ for all } y \in S.$$

$$\Leftrightarrow xyZ_{n-1}(S) = yxZ_{n-1}(S), \text{ for all } y \in S.$$

$$(xy)(yx)^{-1} \in Z_{n-1}(S) \text{ for all } y \in S.$$

$$\Leftrightarrow xy x^{-1}y^{-1} \in Z_{n-1}(S) \text{ for all } y \in S.$$

That is,

$$Z_{n}(S) = \{x \in S / xyx^{-1}y^{-1} \in Z_{n-1}(S), \text{ for all } y \text{ in } S\}.$$

1. Theorem:

A semiring of order p^r p is a prime is nilpotent. (That is, every p- semiring is nilpotent).

Proof:

Let S be a finite semiring of order p^n Where p is a prime and n is a positive integer.

Since S is a prime power order semiring, it has non – trivial center, namely $Z(S) = Z_1(S)$.

Further $|Z_1(S)|$ divides |S| So that

 $|Z_1(S)| = P^r$, for some integer $r, 1 \le r \le n$.

So
$$|S/Z(S)_1| = \frac{|S|}{Z_1(S)} = \frac{P^n}{P^r} = P^{n-r}$$
,

So that $S/Z_1(S)$ is also a prime power order ground and thus it has a non-trivial center, $Z(S/Z_1(S))$ And

 $|ZS / S_1(S)| = p^{t_1}$ for some integer $t_1, 1 \le t_1 \le n$.

Now the second center is that normal subsemiring of S, given by

 $Z_{2}(S) | X_{1}(S) = Z(S/Z_{1}(S))|$

 $|Z_{2}(S)|Z_{1}(S) = |Z(S/Z_{1}(S))| = P^{t_{1}}$ That is $|Z_{2}(S)| = p^{t_{1}} |Z_{1}(S)| = p^{t_{1}}p^{2} = p^{t_{1+r}}$

$$= p^{t_2}$$
, say, where $t_2 = t_1 + r$

So the order of $Z_2(S)$ is also a power of p, namely p^{t_2} , where $t_2 > t_1$ Proceeding in this way we get that $|Z_m(S)|$ is also a power of p, say p^{t_m}

Since $Z_1(S) \subset Z_2(S) \subset \dots \subset Z_m(S) \subset \dots$

 $\mid Z_{1}(S) \mid \leq \mid Z_{2}(S) \mid \leq \dots \leq \mid Z_{m}(S) \mid \leq \dots,$

And $|Z_m(S) = p^{t_m} < p^n|$, For every positive integer m and t_m is increasing as a m increases.

Since p^n is finite, we must have positive integer m such that

 $|S_m(S)| = p^n$

That is $|Z_m(S)| = S$ and S is nilpotent.

1.3.Definition:

Let S be a semiring and let $Z_m(S)$ denote the mth center of S. The series $\{e\} = Z_0(S) \subset Z_1(S) \subset \dots \subset Z_m(S) \subset \dots$ is called the upper central series of G.

2. The connection between nilpotent semirings, normal series and solvable semirings:

2. Theorem :

A semiring S is nil potent if and only if S has a normal series.

 $\{e\} = S_0 \subset S_1 \subset \dots \subset S_m = S.$

Such that $S / S_{i-1} \subset Z(S_i / S_{i-1}), 1 \le i \le m$.

Proof:

Let S be the nil potent semiring of class m is the least positive integer such that $Z_m(S) = S$ Where $Z_n(S)$ is the nth center of S given by

 $Z_n(S)/Z_{n-1}(S) = Z(S/Z_{n-1}(S)).$

Since S is a nilpotent semiring of class m, its upper central series terminates with Z(S) and is of the form.

 $\{e\} = Z_0(S) \subset Z_1(S) \subset Z_2(S) \subset \dots \subset Z_m(S) = S,$

Then this is a normal series of S. further for any i, 1, i m, we have

 $Z_{i}(S)/Z_{i-1}(S) = Z(S/Z_{i-1}(S))$

Taking S_i to be $1 \le i \le m$ we get the if part of the theorem.

Conversely suppose that S has a normal series

 $\{e\} = S_0 \subset S_1 S_2 \subset \dots \subset S_{m-1} \subset S_m = S,$

Such that
$$S_i / S_{i-1} \subset Z(S / S_{i-1}), i = 1, 2, \dots, m$$
 (1)

We shall show that S is nilpotent. In fact we shall show that $Z_m(S) = S$, so that S is nilpotent.

It is given that $S_i / S_{i-1} \subset Z(S / S_{i-1})$, for $i = 1, 2, \dots, m$ Taking i = 1 this gives $S_1 / S_0 \subset Z(S / S_0)$ or $S_1 \subset Z(S) = Z_1(S)$, Since $S_0 = \{e\}$. Again taking i=2, in (1) we get $S_2 / S_1 \subset Z(S / S_1)$

Thus for any $x \in S_2$, $xS_1 \in S_2 / S_1$ so that $xS_1 \in Z(S / S_1)$. Hence xS_1 commutes with every element of S / S_1 . That is,

 $xS_1 \ yS_1 = yS_1 \ XS_1$ for all y. in G, Or, $xy \ x^{-1}y^{-1} \in S_1$, for all $y \in S$, or, $xy^{-1}y^{-1} \in Z_1(S)$ (Since $S_1 \ CZ_1(S)$), For all $x \in S_2$ and $y \in S$

For all $x \in B_2$ and $y \in S$

Recalling the characterization of $Z_m(S)$, (that is $Z_m(S)$, = $\{x \in Y / xyx^{-1}y^{-1} \in Z(S)_{m-1}\}$ For all y in S).

That is $x \in S_2$ implies that $x \in Z_2(S)$, or $S_2 \subset Z_2(S)$

Repeating this process we get $S_n \subset Z_n(S)$ for all positive integers n. Taking n = m we get

 $S_m \subset Z_m(S)$, or, $S \subset Z(S)$. Trivially $Z_m(S)CS$ So $Z_m(S) = S$ and S is nil potent

1. Corollary :

Every nilpotent semiring is solvable, but not the converse.

Proof:

Let S be a nilpotent semiring. Then there exists a positive integer m such that the mth center $Z_m(S) = S$ Here for any positive integer $i, Z_i(S)$ is given by

$$Z_i(S_0/Z_{i-1}(S)) = Z(S/Z_i(S))$$
⁽¹⁾

Consider the series

 $\{e\} = Z_0(S) \subset Z_1(S) \subset \dots \subset Z_m(S) = S.$

This is a normal series since $Z_{i-1}(S)\Delta Z_i(S)$. The factors of the above series are

 $Z_i(S) / Z_{i-1}(S) = Z(S / Z_{i-1}(S))$

So every element of $Z_i(S)/Z_{i-1}(S)$ commutes with every element of $S/Z_{i-1}(S)$. Since $Z_i(S) \subset S$. This implies that every element $Z_i(S)/Z_{i-1}(S)$ commutes with every other element of $Z_i(S)/Z_{i-1}(S)$ is abelian.

That is (2) is a normal series of S with abelian factors, so that S is solvable.

The following example shows that a semirings that is solvable, need not be nilpotent. Consider S_3 . We have seen that

 $\{e\} \subset N = \{1, \alpha, \beta\} \subset S_3.$

Is a normal series and S_3 / N is abelian. So by the theorem 4.4.1, S is solvable.

But S_3 is not nil potent, since its first center $Z_1 = (S_3) = \{i\}$. So for no positive integer $Z_n(S_3) = S_3$ and thus S_3 is not nilpotent.

Some elementary properties of nilpotent semirings:

3. Theorem

Let S be a nilpotent semiring. Then every sub semiring of S and every homomorphic image of S are nilpotent.

Proof:

Let S be nilpotent semiring of class m, so that $Z_m(S) = S$

(i) Let H be a sub semiring of S. Then $H \cap Z(S) \subseteq Z(H)$. For if $x \in H \cap Z(S)$,

then $x \in Z(S)$, so that xs = sx, for all g in S. Since $H \subseteq S$, xh = hx for all in H. So

$$x \in Z(H)$$
 or $H \cap Z(S) \subseteq Z(H)$.
Now $Z_2(S)/Z_1(S) = Z(S/Z(S))$.
So, if $x \in Z_2, Z[Z_1(S)]$ commutates with every element of $S/Z_1(S)$ for all y in
S.
That is, for all x in $Z(S)$ and for all y in S , $xy x^{-1}y^{i-1} \in Z(S)$

That is, for all $x \text{ in } Z_2(S)$ and for all y in $S, xy x^{-1}y^{l-1} \in Z_1(S)$.

Hence (Since $H \subset S$) for $x \in H \cap Z_2(S)$, and for all y in $xy^{x-1}y^{-1} \in I \cap Z_1(S)$. So $x \in Z_2(H)$ and thus H

A,
$$xy^{x-1}y^{-1} \in I \cap Z_1(S)$$
. So $x \in Z_2(H)$ and

$$H \cap Z_2(S) \subseteq Z_2(H).$$

Repeating this process we get

 $H \cap Z_i(S) \subseteq Z_i(H)$ for all i.

So
$$H = H \cap S = h \cap Z_m(S) \subset Z_m(S)$$
, or $Z_m(S) = H$.

This shows that H is nilpotent.

(ii) Let S be nilpotent semiring and let H be a homomorphic image of S. Then there exists a positive integer m such that

 $Z_m(S) = S$

(1)

And there exists an onto homomorphism $\phi: S \to H$.

First we observe that $\phi(Z(S)) \subseteq Z(H)$. For this we have to show that $\phi(x)\varepsilon Z(H)$ for every $x\varepsilon Z(S)$. Then

Xs = sx, for all x in S.

From this we get $xs x^{-1}s^{-1} = e$ or, $f(xy x^{-1} y^{-1}) = \phi(e)$ the identity element of S.

That is

$$\phi(x) \phi(y) \phi(x)^{-1} \phi(y)^{-1} = \phi(e), \text{ for all s in S (2)}$$

So if $h \in H$; then since f is on to, $h = \phi(s)$ for some $s \in S$ therefore
 $\phi(x) h \phi(x)^{-1} h^{-1} = \phi(x) \phi(s) \phi(x)^{-1} \phi(s)^{-1} = \phi(e), \text{ by (2)}.$
That is
 $\phi(x) h = h \phi(x)$ for every h in H, so that $\phi(x) \in Z(H)$.
Hence $\phi(Z(S)) \subseteq Z(H)$ or $\phi(Z_1(S)) \subseteq Z_1(H)$

Next let $z \in Z_2(S)$. Then by the definition of $Z_2(S)$, $zy z^{-1}y^{-1} \in Z_1(S)$, For all z in S.

So
$$\phi(zy Z^{-1}y^{-1}) \in \phi(Z_1(S)) \ge Z_1(S)Z_1(H)$$
 for z in S.
That is,
 $\phi(z)\phi(z)\phi(z)^{-1}\phi(y)^{-1} \in Z_1(H)$

Again by the definition of $Z_{2}(H)$ it follows that $(z)Z_{2}(H)$ this shows that

 $\phi(Z_2(S)) \subseteq Z_2(H)$ Proceeding in this way we get $\phi(Z_i(S)) \subseteq Z_2(H)$ for all positive integers Taking i=m, we get that $\phi(Z_m(S)) \subseteq Z_m(H)$ or $\phi(G) \subseteq Z_m(H)$ or $H \subseteq Z_m(H)$ But trivially $Z_m(H) \subseteq H$. So $Z_m(H) = H$ and H is nilpotent

4. Theorem

Let H_1, H_2, \dots, H_m be a family of nil potent semirings. Then $H_1 \times H_2 \times \dots, H_m$ is nilpotent.

Proof:

First let us show that $Z(H \times K) = Z(H) \times Z(K)$ For any two semirings H and K.

Since H and K are nil potent semirings there exist positive integers n and p such that

```
Z_n(H) = H and Z_n(K) = K
First let us prove that Z(H \times K) = Z(H) \times Z(K)
Now(x, y) \varepsilon Z(H \times K)
\Leftrightarrow (x, y)(h, k) = (h, k)(x, y) \text{ for all } (h, k) \text{ in } H \times K.
\Leftrightarrow (xh, yk) = (hx, ky) for all h in H and k in K.
\Leftrightarrow xh = hx, and yk = ky, for all h in H and k in K.
\Leftrightarrow x \in Z(H) \text{ and } y \in Z(K).
\Leftrightarrow (x, y) \in Z(H) \times Z(K)
Thus Z(H \times K) = Z(H) \times Z(H)
That is Z_1(H K) = Z_1(H) \times Z_1(K)
In the same way we can see that
Z_i(H \times K) = Z_i(H) \times Z_i(K) for all positive integers i.
For m = \max\{n, p\} taking i=m, we get
z_m(H \times K) = Z_m(H) \times Z_m(K)
= H \times K
(Since Z_m(H) = H) and Z_m(K) = K
So H \times K is nilpotent
```

Using induction (or proceeding in this way) we can show that $H_1 \times H_2 \times \dots \times H_m$ is nilpotent.

References:

- [1] J.S.Golan, The theory of semirings with applications in mathematics and theoretical computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical Harlow UK, 1992.
- [2] P.J. Allen, A fundamental theorem of homeomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
- [3] R. Ebrahimi Atani and S. Ebrahimi Atani, Ideal theory in Commutative semirings, Bul. Acad. Stiinte Repub. Mold. Mat. 2 (2008), 14-23.