Some Coupled Fixed Point Theorems in Partially Ordered Metric Space

A.Muraliraj and R.Jahir Hussain
P.G. and Research Department of Mathematics, Urumu Dhanalakshmi College, Kattur, Tiruchirappalli-620 019, TamilNadu, India.
karguzali@gmail.com
P.G. and Research Department of Mathematics, Jamal Mohamed College(Autonomous), Tiruchirappalli-620 020, Tamil Nadu, India.

Abstract

Resently, J. Harjani, B. Lopez and K. Sadarangani establi established for mappings satisfying a rational type contractive condition in partially ordered metric space. In this paper, we obtain some corresponding coupled fixed point theorems in partially ordered metric spaces by employing a rational type contractive condition.

Keywords: Coupled fixed point theorems; partially ordered metric spaces; rational type contractive condition.

2000 AMS Subject Classification: 47 H 10 ; 54H25; 47H09.

1. Introduction

The notion of coupled fixed points was introduced by Chang and Ma [3]. Since then, the concept has been of interest to many researchers in metrical fixed point theory. Bhaskar and Lakshmikantham [2] established coupled fixed point theorems in a metric space endowed with partial order by employing the following contractivity condition: For a mapping $T: X \times X \rightarrow X$, there exists $k \in(0,1)$ such that $d(T(x, y), T(u, v)) \leq \frac{k}{2}[d(x, u)+d(y, v)] \forall x, y, u, v \in X, x \geq u, y \leq v$. Harjani et al [5] estabished some fixed point theorem in partially ordered metric space setting by using a contractive condition of rational type. In this paper, we shall prove corresponding coupled fixed point theorems in partially ordered metric space by employing some notions of Bhaskar and Lakshmikantham [2] as well as a rational type contractive condition.

2. Preliminaries

Definition 2.1: Let (X, d) be a metric space. An element $(\mathrm{x}, \mathrm{y}) \in \mathrm{X} x \mathrm{X}$ is said to be a coupled fixed point of the mapping $T: X x X X$ if $T(x, y)=x$ and $T(y, x)=y$. Definition 2.2: Let (X, \leq) be a partially ordered set and $\mathrm{T}: \mathrm{X} \mathrm{xX} \rightarrow \mathrm{X}$. We say that T has the mixed monotone property if $T(x, y)$ is monotone nondecreasing in x and monotone nonincreasing in y , that is for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$,

$$
\begin{aligned}
& \forall x_{1}, x_{2} \in X, x_{1} \leq x_{2} \Rightarrow T\left(x_{1}, y\right) \leq T\left(x_{2}, y\right) \\
& \forall y_{1}, y_{2} \in X, y_{1} \leq y_{2} \Rightarrow T\left(x, y_{1}\right) \geq T\left(x, y_{2}\right)
\end{aligned}
$$

3. Main results

Let (X, \leq) be a partially ordered metric set and d be a metric on X such that (X, d) is a complete metric space. We also endow the product space $\mathrm{X} \times \mathrm{X}$ with the following partial order: for $(\mathrm{x}, \mathrm{y}),(\mathrm{u}, \mathrm{v}) \in \mathrm{X} \times \mathrm{X},(\mathrm{u}, \mathrm{v}) \leq(\mathrm{x}, \mathrm{y}) \Leftrightarrow \mathrm{x} \geq \mathrm{u}, \mathrm{y} \leq \mathrm{v}$.

Theorem 3.1: Let (X, \leq) be a partially ordered metric set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T: X x X \rightarrow X$ be a continuous mapping which has the mixed monotone property such that,

$$
\text { for some } \alpha, \beta \in[0,1), \forall x, y, u, v \in X, x \neq u \text {, we have }
$$

$$
\begin{equation*}
d(T(x, y), T(u, v)) \leq \alpha\left(\frac{d(x, T(x, y))+d(u, T(u, v))}{d(x, u)+d(x, T(x, y))}\right) d(x, T(x, y))+\beta d(x, u), \alpha+\beta<1 . \tag{1}
\end{equation*}
$$

Then T has a coupled fixed point.
Proof. Choose $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \in \mathrm{X} \times \mathrm{X}$ and set $\mathrm{x}_{1}=\mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{y}_{1}=\mathrm{T}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)$, and in general, $\mathrm{x}_{\mathrm{n}+1}=\mathrm{T}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right), \mathrm{y}_{\mathrm{n}+1}=\mathrm{T}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)$.

With $\mathrm{x}_{0} \leq \mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{x}_{1}$ (say) and $\mathrm{y}_{0} \geq \mathrm{T}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)=\mathrm{y}_{1}$ (say). By the iterative process above, $\mathrm{x}_{2}=\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{y}_{2}=\mathrm{T}\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right)$. Therefore,
$\mathrm{T}^{2}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{T}\left(\mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{T}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)\right)=\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{x}_{2}$,
and $\mathrm{T}^{2}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)=\mathrm{T}\left(\mathrm{T}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right), \mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right)=\mathrm{T}\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right)=\mathrm{y}_{2}$.
Due to the mixed monotone property of T , we obtain
$\mathrm{x}_{2}=\mathrm{T}^{2}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \geq \mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{x}_{1}, \mathrm{y}_{2}=\mathrm{T}^{2}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)=\mathrm{T}\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right) \leq \mathrm{T}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)=\mathrm{y}_{1}$.
In general, we have that for $\mathrm{n} \in \mathrm{N}$,
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{T}^{\mathrm{n}+1}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{T}\left(\mathrm{T}^{\mathrm{n}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{T}^{\mathrm{n}}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)\right), \mathrm{y}_{\mathrm{n}+1}=\mathrm{T}^{\mathrm{n}+1}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right)=\mathrm{T}\left(\mathrm{T}^{\mathrm{n}}\left(\mathrm{y}_{0}, \mathrm{x}_{0}\right), \mathrm{T}^{\mathrm{n}}\left(\mathrm{x}_{0}\right.\right.$, y_{0}))

It is obvious that
$\mathrm{x}_{0} \leq \mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{x}_{1} \leq \mathrm{T}^{2}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{x}_{2} \leq \ldots \ldots . . \leq \mathrm{T}^{\mathrm{n}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{x}_{\mathrm{n}} \leq$.
and $y_{0} \geq T\left(y_{0}, x_{0}\right)=y_{1} \geq T^{2}\left(y_{0}, x_{0}\right)=y_{2} \geq \ldots \ldots . \geq T^{n}\left(y_{0}, x_{0}\right)=y_{n} \geq$.
Therefore, we have by condition (1) that
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{T}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right), \mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-1}\right)\right)$
$\leq \alpha\left(\frac{d\left(x_{n}, T\left(x_{n}, y_{n}\right)\right)+d\left(x_{n-1}, T\left(x_{n-1}, y_{n-1}\right)\right)}{d\left(x_{n}, x_{n-1}\right)+d\left(x_{n}, T\left(x_{n}, y_{n}\right)\right)}\right) d\left(x_{n}, T\left(x_{n}, y_{n}\right)\right)+\beta d\left(x_{n}, x_{n-1}\right)$

$$
\begin{aligned}
& =\alpha\left(\frac{d\left(x_{n}, x_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)}{d\left(x_{n}, x_{n-1}\right)+d\left(x_{n}, x_{n+1}\right)}\right) d\left(x_{n}, x_{n+1}\right)+\beta d\left(x_{n}, x_{n-1}\right) \\
& =\alpha \mathrm{d}\left(\mathrm{x}_{n}, \mathrm{x}_{\mathrm{n}+1}\right)+\beta \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)
\end{aligned}
$$

from which it follows that

$$
\begin{align*}
& d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\beta}{1-\alpha}\right) d\left(x_{n}, x_{n-1}\right) \ldots \ldots(2) \tag{2}\\
& \mathrm{d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}}\right)=\mathrm{d}\left(\mathrm{~T}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right), \mathrm{T}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-1}\right)\right) \\
& \leq \alpha\left(\frac{d\left(y_{n}, T\left(y_{n}, x_{n}\right)\right) d\left(y_{n-1}, T\left(y_{n-1}, x_{n-1}\right)\right)}{d\left(y_{n}, y_{n-1}\right)+d\left(y_{n}, T\left(y_{n}, x_{n}\right)\right)} d\left(y_{n}, T\left(y_{n}, x_{n}\right)\right)+\beta d\left(y_{n}, y_{n-1}\right)\right. \\
& =\alpha\left(\frac{d\left(y_{n}, y_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)}{d\left(y_{n}, y_{n-1}\right)+d\left(y_{n}, y_{n+1}\right)}\right) d\left(y_{n}, y_{n+1}\right)+\beta d\left(y_{n}, y_{n-1}\right) \\
& =\alpha \mathrm{d}\left(\mathrm{y}_{\mathrm{n},} \mathrm{y}_{\mathrm{n}+1}\right)+\beta \mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}-1}\right) \\
& d\left(y_{n}, y_{n+1}\right) \leq\left(\frac{\beta}{1-\alpha}\right) d\left(y_{n}, y_{n-1}\right) \ldots(\text { (3) } \tag{3}
\end{align*}
$$

From (2) and (3),
$d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right) \leq\left(\frac{\beta}{1-\alpha}\right)\left(d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)\right)$.
Let $\delta_{\mathrm{n}}=d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)$ and $\lambda=\frac{\beta}{1-\alpha}$. Then, we have from (4) that
$\delta_{n} \leq \lambda \delta_{n-1} \leq \lambda^{2} \delta_{n-2} \leq$ \qquad .$\leq \lambda^{n} \delta_{0}$.
If $\delta_{0}=0$, then ($\mathrm{x}_{0}, \mathrm{y}_{0}$) is a coupled fixed point of T .
Suppose that $\delta_{0}>0$. Then, for each $\mathrm{r} \in \mathrm{N}$, we obtain by (5) and the repeated application of triangle inequality that

$$
\begin{align*}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{r}}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{r}}\right) \leq\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)+\cdots+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+\mathrm{r}-1}, \mathrm{x}_{\mathrm{n}+\mathrm{r}}\right)\right] \\
& +\left[\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}\right)+\cdots+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}+\mathrm{r}-1}, \mathrm{y}_{\mathrm{n}+\mathrm{r}}\right)\right] \\
& =\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}\right)\right]+\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{n+2}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}\right)\right] \\
& +\cdots+\left[\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+\mathrm{r}-1}, \mathrm{x}_{\mathrm{n}+\mathrm{r}}\right)+\mathrm{d}\left(\mathrm{y}_{\mathrm{n}+\mathrm{r}-1}, \mathrm{y}_{\mathrm{n}+\mathrm{r}}\right)\right] \\
& \leq \delta_{\mathrm{n}}+\delta_{\mathrm{n}+1}+\cdots+\cdots+\delta_{\mathrm{n}+\mathrm{r}-1} \\
& \leq \frac{\lambda^{n}\left(1-\lambda^{r}\right) \delta_{0}}{1-\lambda} \rightarrow 0 \text { as } n \rightarrow \infty \ldots . . \text { (6) } \tag{6}
\end{align*}
$$

Therefore, $\left\{\mathrm{x}_{\mathrm{n}}\right\},\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are Cauchy sequences in (X, d).
Since (X, d) is a complete metric space, there exist $\mathrm{x}^{*}, \mathrm{y}^{*} \in \mathrm{X}$ such that
$\lim _{n \rightarrow \infty} x_{n}=x^{*}$ and $\lim _{n \rightarrow \infty} y_{n}=y^{*}$. We now show that $\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$ is a coupled fixed point of T.Let $\epsilon>0$. Continuity of T at ($\mathrm{x}^{*}, \mathrm{y}^{*}$) implies that, for a given $\epsilon / 2>0$, there exists a $\delta>0$, such that $\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{u}\right)+\mathrm{d}\left(\mathrm{y}^{*}, \mathrm{v}\right)<\delta \operatorname{implies} \mathrm{d}\left(\mathrm{T}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right), \mathrm{T}(\mathrm{u}, \mathrm{v})\right)<\epsilon / 2$.

Since $\left\{\mathrm{x}_{\mathrm{n}}\right\} \rightarrow \mathrm{x}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\} \rightarrow \mathrm{y}$, for $\zeta=\min (\epsilon / 2, \delta / 2)>0$, there exist $\mathrm{n}_{0}, \mathrm{~m}_{0}$, such that, for $\mathrm{n} \geq \mathrm{n}_{0}, \mathrm{~m} \geq \mathrm{m}_{0}$, we have $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right)<\zeta$, and $\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}^{*}\right)<\zeta$.

Therefore, for $n \in I N, n \geq \max \left\{n_{0}, m_{0}\right\}$,
$\mathrm{d}\left(\mathrm{T}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right), \mathrm{x}^{*}\right) \leq \mathrm{d}\left(\mathrm{T}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right), \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}^{*}\right)$
$=\mathrm{d}\left(\mathrm{T}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right), \mathrm{T}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}^{*}\right)<\epsilon / 2+\zeta \leq \epsilon$,
from which it follows that $T\left(x^{*}, y^{*}\right)=x^{*}$. In a similar manner, we can show that T (y^{*}, x^{*}) $=y^{*}$.

Hence, $\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$ is a coupled fixed point of T.
This complete the proof.
Theorem 3.2: In Theorem3.1, Adding the condition that there exists $\mathrm{z} \in \mathrm{X}$ which is comparable to x and $\mathrm{y}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then, T has a unique coupled fixed point.

Suppose that there exist ($\mathrm{x}^{*}, \mathrm{y}^{*}$), ($\left.\mathrm{x} \cdot \mathrm{y} \quad\right) \in \mathrm{X} \times \mathrm{X}$ are coupled fixed points of T.
Case(I): If $\mathrm{x}^{*}, \mathrm{x}$ are comparable and $\mathrm{y}^{*}, \mathrm{y}$ are also comparable, and $\mathrm{x}^{*} \neq \mathrm{x}$,
$y^{*} \neq \mathrm{y}$, then by the contractive condition, we have
$\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{x}\right)=\mathrm{d}\left(\mathrm{T}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right), \mathrm{T}(\mathrm{x}, \mathrm{y})\right)$
$\leq \alpha\left(\frac{d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)+d\left(x^{\prime}, T\left(x^{\prime} y^{\prime}\right)\right)}{d\left(x^{*}, x^{\prime}\right)+d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)}\right) d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)+\beta d\left(x^{*}, x^{\prime}\right)$
$=\alpha\left(\frac{d\left(x^{*}, x^{*}\right)+d\left(x^{\prime}, x^{\prime}\right)}{d\left(x^{*}, x^{\prime}\right)+d\left(x^{*}, x^{*}\right)}\right) d\left(x^{*}, x^{*}\right)+\beta d\left(x^{*}, x^{\prime}\right)=\beta d\left(x^{*}, x^{\prime}\right)$
which gives $\mathrm{d}\left(\mathrm{x}^{*}, \mathrm{x} \quad\right) \leq 0, \beta<1$ (a contradiction). Thus, $\mathrm{x}^{*}=\mathrm{x}$

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{y}^{*}, \mathrm{y}\right)=\mathrm{d}\left(\mathrm{~T}\left(\mathrm{y}^{*}, \mathrm{x}^{*}\right), \mathrm{T}(\mathrm{y}, \mathrm{x})\right) \\
& \leq \alpha\left(\frac{d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right)+d\left(y^{\prime}, T\left(y^{\prime}, x^{\prime}\right)\right)}{d\left(y^{*}, y^{\prime}\right)+d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right)}\right) d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right)+\beta d\left(y^{*}, y^{\prime}\right) \\
& =\alpha\left(\frac{d\left(y^{*}, y^{*}\right)+d\left(y^{\prime}, y^{\prime}\right)}{d\left(y^{*}, y^{\prime}\right)+d\left(y^{*}, y^{*}\right)}\right) d\left(y^{*}, y^{*}\right)+\beta d\left(y^{*}, y^{\prime}\right)=\beta d\left(y^{*}, y^{\prime}\right)
\end{aligned}
$$

which gives $\mathrm{d}\left(\mathrm{y}^{*}, \mathrm{y} \quad\right) \leq 0$, (a contradiction).
Hence, $y^{*}=y \cdot$ Therefore, $\left(x^{*}, y^{*}\right)$ is a unique coupled fixed point of T.
Case II: If x^{*} is not comparable to x and y^{*} is not comparable to y ' then by the contractive condition, there exists w comparable to x^{*} and x , and there exists v comparable to y^{*} and y

Monotonicity implies that w_{n} is comparable to $x_{n}^{*}=T\left(x_{n-1}^{*}, y_{n-1}^{*}\right)=x^{*}$, and w_{n} is comparable to w_{1}. Also, monotonicity implies that y_{n}^{*} is comparable to v and y_{n}^{*} is also comparable to w_{2}.

On the other hand, if $x_{n}^{*} \neq w_{1}, x_{n}^{\prime} \neq w_{1}$, then by the contractive condition, we get $d\left(w_{1}, x_{n}^{*}\right)=d\left(T\left(w_{1}, w_{2}\right), T\left(x_{n-1}^{*}, y_{n-1}^{*}\right)\right)$

Case III: If ($\mathrm{x}^{*}, \mathrm{y}^{*}$) is not comparable to (x, y), then there exists (w, v) comparable to $\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$ and (x, y). Monotonicity implies that
($\mathrm{T}^{\mathrm{n}}(\mathrm{w}, \mathrm{v}), \mathrm{T}^{\mathrm{n}}(\mathrm{v}, \mathrm{w})$)

$$
\begin{aligned}
& d\left(\binom{x^{*}}{y^{*}},\binom{x^{\prime}}{y^{\prime}}\right)=d\left(\binom{T^{n}\left(x^{*}, y^{*}\right)}{T^{n}\left(y^{*}, x^{*}\right)},\binom{T^{n}\left(x^{\prime}, y^{\prime}\right)}{T^{n}\left(y^{\prime}, x^{\prime}\right)}\right) \\
& \left.\leq d\left(\binom{T^{n}\left(x^{*}, y^{*}\right)}{T^{n}\left(y^{*}, x^{*}\right)},\binom{T^{n}(w, v)}{T^{n}(v, w)}\right)+d\binom{T^{n}(w, v)}{T^{n}(v, w)},\binom{T^{n}\left(x^{\prime}, y^{\prime}\right)}{T^{n}\left(y^{\prime}, x^{\prime}\right)}\right) \\
& \leq d\left(T^{n}\left(x^{*}, y^{*}\right), T^{n}(w, v)\right)+d\left(T^{n}\left(y^{*}, x^{*}\right), T^{n}(v, w)\right) \\
& +d\left(T^{n}(w, v), T^{n}\left(x^{\prime}, y^{\prime}\right)\right)+d\left(T^{n}(v, w), T^{n}\left(y^{\prime}, x^{\prime}\right)\right) \\
& \leq \alpha^{n}\left(\frac{d\left(x^{*}, T^{n}\left(x^{*}, y^{*}\right)\right)+d\left(w, T^{n}(w, v)\right)}{d\left(x^{*}, w\right)+d\left(x^{*}, T^{n}\left(x^{*}, y^{*}\right)\right)} d\left(x^{*}, T^{n}\left(x^{*}, y^{*}\right)\right)+\beta^{n} d\left(x^{*}, w\right)\right. \\
& +\alpha^{n}\left(\frac{d\left(y^{*}, T^{n}\left(y^{*}, x^{*}\right)\right)+d\left(v, T^{n}(v, w)\right)}{d\left(y^{*}, v\right)+d\left(y^{*}, T^{n}\left(y^{*}, x^{*}\right)\right)}\right) d\left(y^{*}, T^{n}\left(y^{*}, x^{*}\right)\right)+\beta^{n} d\left(y^{*}, v\right) \\
& +\alpha^{n}\left(\frac{d\left(w, T^{n}(w, v)\right)+d\left(x^{\prime}, T^{n}\left(x^{\prime}, y^{\prime}\right)\right)}{d\left(w, x^{\prime}\right)+d\left(w, T^{n}(w, v)\right)}\right) d\left(w, T^{n}(w, v)\right)+\beta^{n} d\left(w, x^{\prime}\right) \\
& +\alpha^{n}\left(\frac{d\left(v, T^{n}(v, w)\right)+d\left(y^{\prime}, T^{n}\left(y^{\prime}, x^{\prime}\right)\right)}{d\left(v, y^{\prime}\right)+d\left(v, T^{n}(v, w)\right)}\right) d\left(v, T^{n}(v, w)\right)+\beta^{n} d\left(v, y^{\prime}\right) \\
& =\beta^{n}\left[d\left(x^{*}, w\right)+d\left(y^{*}, v\right)+d\left(w, x^{\prime}\right)+d\left(v, y^{\prime}\right)\right] \rightarrow 0 a s n \rightarrow \infty
\end{aligned}
$$

Hence, T has a unique coupled fixed point.

References

[1] I. Beg, A. Latif, R. Ali and A. Azam; Coupled fixed point of mixed monotone operators on probabilistic Banach spaces, Archivum Math. 37 (1) (2001), 1-8.
[2] T. G. Bhaskar and V. Lakshmikantham; Fixed point theorems in partially ordered metric Spaces and applications, Nonlinear Analysis: Theory, Methods \& Applications 65 (7) (2006), 1379-1393.
[3] S. S. Chang and Y. H. Ma; Coupled fixed point of mixed monotone condensing operators and existence theorem of the solution for a class of functional equations arising in dynamic programming, J. Math. Anal. Appl. 160 (1991), 468-479.
[4] L. Ciric and V. Lakshmikantham; Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stochastic Analysis and Applications 27 (2009), 1246-1259.8
[5] J. Harjani, B. Lopez and K. Sadarangani; A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstract and Applied Analysis, Volume (2010), Article D190701, 8pages.
[6] D. S. Jaggi; Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics 8(2) (1977), 223-230.
[7] V. Lakshmikantham and L. Ciric; Coupled fixed point theorems for nonlinear contractions in Partially ordered metric spaces, Nonlinear Analysis: Theory, Methods \& Applications 70 (12) 2009), 4341-4349.
[8] J. J. Nieto and R. Rodríguez-López, "Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, " Acta Mathematica Sinica, vol. 23, no. 12, pp.2205-2212, 2007
[9] Y. Wu, "New fixed point theorems and applications of mixed monotone operator, " Journal of Mathematical Analysis and Applications, vol. 341, no. 2, pp. 883-893, 2008.

