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Abstract 
 

The aim of the study is to discuss the effect of Magneto hydrodynamics 
shocks on the dynamics of Astrophysical plasma. The solution of Riemann 
problems to compute numerical solutions of Ideal magneto hydrodynamics for 
an arbitrary initial condition is also obtained which is partly based on the 
algorithm proposed by Torrilhon (2002) . 
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1.Introduction 
Shocks and discontinuities are transition layers where the plasma properties change 
from one equilibrium state to another. The plasma is a fluid composed by charged 
particles in addition to this, a moving charged particle creates a magnetic field which 
also interacts with the other charged particles. The relation between the plasma 
properties on both sides of a shock or a discontinuity can be obtained from the 
conservatives form of the magneto hydrodynamics equations, assuming conservative 
of mass,momentum energy and of in the study of compressible fluid through nozzle 
the continuity consideration led . In some case to the formation of a discontinuity 
surface across which these are jumps in pressure,density, temperature etc. such 
surface are called shock wave these may also result from their causes, for example 
detonation of explosives supersonic flights of projectile and so on. 
 Magneto hydrodynamic (MHD) flow is governed by classical fluid dynamics and 
electromagnetic.  
 Examples of such fluids include liquid metals, plasmas, and salt water or 
electrolytes. Application to MHD can be derive and control flows in astronomy geo-
physics, network, electromagnetic casting of metal and MHD power generation Many 
Astrophysical phenomena is based on MHD flows of plasma. 
 The system of ideal MHD is not strictly hyperbolic. Gogosov (1962) investigated 
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the wave-pattern of the solution in MHD Riemann problems on the existence and 
uniqueness of solutions of ideal MHD Riemann, considering only the evolutionary 
waves and switch-off waves.Torrilhon (2002) investigated the uniqueness of the 
solution considering the intermediate shocks. 
 The Riemann problem is a kind of initial value problems for hyperbolic systems 
like system of MHD equations with discontinuous initial condition in the form 
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t ,Solving Riemann problems is one of main tasks in numerical 

schemes for MHD flow because there is no convincing criterion for the physically 
relevant solution. The entropy condition admits only the shocks across . 
 The objective of present work is to explain Ideal MHD equations and exact 
solution of Riemann solutions are used to obtain numerical fluxes and problems to 
compute numerical solutions of Ideal MHD equations and also discussed the internal 
rotation motion of stars and turbulence which is one of basic problems in 
astrophysics. 
 The paper is organized as follows. Sec. 2 deals Ideal MHD equations and simple 
waves in Ideal MHD and discontinuity. Sec .3 deal a brief review of shock waves 
which are constituents of the solution of the Riemann problems. Sec. 4 discuss the 
importance of magnetic field in stars and turbulence. Finally conclusion that have 
been drawn from this work are presented in Sec.5.  
 
 
2.Ideal MHD equation 
The ideal MHD equations consist of the continuity equation, the Cauchy momentum 
equation, Ampere's Law neglecting displacement current, and a temperature evolution 
equation. Ideal MHD is only strictly applicable when the plasma is strongly collision, 
so that the time scale of collisions is shorter than the other characteristic times in the 
system, and the particle distributions are therefore close to Maxwell’s equation. 
In plane symmetry the MHD equation are given by 
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 Where Pu,,ρ  and B are density, flow velocity, pressure and the magnetic field 
respectively. Total energy density  
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 For 1D plane symmetric flow 0. =∇ B  
 Equations (2.1)-(2.5) can be written in conservative form as  
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 And the flux vector function 
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2.1 Simple waves in Ideal MHD 

The jacobian matrix 
U
FJ

∂
∂=  has 7 real eigenvalues. Ideal MHD equations are 

hyperbolic one for each wave.The dynamics of magnetized plasmas can be interpreted 
using solution of the properties of linear and nonlinear wave . The properties of linear 
waves can be study using the dispersion relation ).( xtie λω + , where ω is the frequency 
and λ is the wave vector. The MHD wave families are fast, Alfven,slow and entropy. 

1. Fastmagnetosonic waves fcu m  are longitudinal waves with variations in 
pressure and density.Fast magnetosonic waves are correlated with magnetic 
field. 

2. Alfven waves acu m are transverse waves with no variation in pressure and 
density.Alfen waves can be polarized.The sum of linear polarizations can lead 
to circularly polarized alfven,slow and entropy waves. 

3. Slowmagnetosonic waves scu m are longitudinal waves with variations in 
pressure and density but slow magnetosonic waves are anticorrelated with 
magnetic field. 

4. Entropy wave u is a contact discontinuity with no variation in pressure and 
velocity.In these waves,the minus (plus) sign is applied to left-going (right-
going) waves. MHD waves involve transversrs motion.  

 
 The characteristic speeds are expressed as 
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 Where a  is the sound speed given by 
ρ
γPa = .The slow or fast signal could be 

shocks or rarefaction.   

 
 
 Since fas ccc ≤≤ .This reflect that eigen values may coinside at a special point. 
Hence,the system of Ideal MHD equations is not strictly hyperbolic.There are certain 
cases where two or more eigen value collaps to the same value. 

1. If zy BB == 0 and a
x c

BPa =≠=
ρρ

γ 2

,In this case either both fast or slow 

eigen values collapse with Alfven speed. 

2. If zy BB == 0 and a
x c

BPa ===
ρρ

γ 2

.In this case Slow and Fast eigen 

values collapse with Alfven eigen values. 
3. If 0=xB .Both Slow and Alfven waves collapse to entropy wave. 

 When Eigen values collapse, there exists possibility of over compressive and 
under compressible Shocks. This fact makes finding solutions to the equations to ideal 
MHD more complicated. Today, the most important method for solving the MHD 
equations are numerical methods. But the development of numerical technique to 
solve MHD has been slower due to complexity of the MHD flow. Grid based methods 
to solve MHD equations is based on explicity finite difference scheme called the total 
variation dimising (TVD) scheme.In this method the conserved variables are 
discretized on a grid, with volume averaged values stored at cell centers. One of grid 
code for MHD is Athena . Athena implements a higher-order Godunov scheme .In 
this method,the difference in cell average values at each grid interface define set of 
Riemann problems. Solution of Riemann problems averaged over cell give time-
evolution of cell average value. Riemann solvers available to compute the fluxes. 
 The electric currents transmitted in an electrolyte solution interact with the 
magnetic field to form Lorentz body forces that in turn, drive fluid motion.Lorentz 
force is the flow in the direction perpendicular to both magnetic and electric fields in 
conductive, solutions in the MHD system with initial velocity and initial magnetic 
field by keeping electric field as negligible.The current flow in a direction 
perpendicular to the direction of magnetic field causes the fluid to experience a force. 
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The force is in a direction perpendicular to both the magnetic field and the current 
flow.However,in many situation the changes in pressure and temperature are 
sufficient small that the changes in density are negligible .That flow can be modelled 
as an incompressible flow . 
 For gases, to determine whether fow to use compressible or incompressible fluid 
dynamics, the Mach number of the flow is tobe evaluated. Compressible effect can be 
ignored at Mach numbers below approximately 0.3. 
 For liquids, the incompressible flow depends on fluid properties and the flow 
condition how close to critical pressure the actual flow pressure becomes .The 
phenomenon of strong and weak discontinuities in a compressible fluid has been of 
great interest amongst the scientist and mathematician .Rankine Hugonoit developed 
the jump conditions for sudden charges in physical parameters such as temp pressure 
and velocity etc. with discontinuity. This sudden change may occur on account of 
sudden explosions in compressible gases, collision of clouds, movements of super 
sonic jets with high mach numbers.  
 Since most of the problems occurring are non-linear are in nature, the similarity 
condition play an important role in solving such problems. Analytical similarity 
solutions as well as numerical solution exist for electrically conducting compressible 
flows across such discontinuities. It is therefore proposed that study of such non-
linear problems nil come out in presence of conducting and non conducting medium 
where conditions may be adiabatic or isothermal or both.  
 
2.2. Discontinuities in ideal MHD 
In one-dimensional nu  and B  are scalar normal component of vector variablesu  and 
B in the direction of the space variable and the two-dimensional transversal parts tu
and tB . If x is the space direction. We have ),(),,( tnzyx BBBBBB == and following 
Torrilhon (2002) MHD discontinuity satisfy the Rankine-Hugoniot relations, which in 
ideal MHD are expressed as  
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where ρ
1=u  is the specific volume .Fixing the upstream normalize quanttiies 
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 Solving the equation (2.21)-(2.23),Using the quantities 
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  (2.26)  
 The plus and minus signs correspond to the left-and right-going discontinuities 
respectively. 
 
 
3.SHOCKS WAVE 
When macroscopic motion with supersonic speed occurs in an interplanetary 
atmosphere occurs, strong and weak discontinuities popularly known as shock wave 
come into picture . In other word,A shocks wave is a special kind of wave as a steep 
finite pressure wave. In some situations shocks are undesirable because they interfere 
with the normal flow behaviour as turbomachines Parker (1963) studied the flow 
produced in solar wind using similarity method. Lee and Chen (1969) attempted the 
only self consistent similarly variable model of flow generated in a conducting plasma 
verma etal (1986) studied the effect of magnetic field on shock in a rotating 
interplanetary gases. . The normal shock wave is perpendicular to one dimensional 
flow . Shock may occur on account of supersonic flow developed on account of local 
accelerations. These shocks may be normal or inclined to the direction of local flow 
;They may cause boundary layer separation and deviation of flow from its designed 
direction. To study the complex gas motion behind the shock waves,One has to solve 
two points boundary value problems for a set of non linear partial differential 
equation . Other undesirable forms of shock waves are the sonic boom created by 
supersonic aircrafts and the blast waves generated by an explosion. One of the 
boundaries e.g. the point of explosion is fixed in space and has boundary conditions 
arising out of special symmetry about it. The other boundary is the shock waves 
across which the unknown flow variable satisfies certain condition laws . On account 
of high temperature that prevail in many phenomenon with shocks.  
 Since the conservation laws apply across the phenomenon of non-linear 
discontinuities in a conducting plasma the analytical solutions may be obtained in 
some cases, which restricts the propagation of these discontinuities along some 
characteristics. Riemann give the method of characteristics for analytic expressions 
for the velocity of shocks wave. 
 Some useful applications of shock waves are in the shock tubes and supersonic 
compressors. A strong moving shock wave is utilised o accelerate the flow to a high 
Mach number in shock tube where flow behaviour at high Mach numbers can be 
studied.On account of abrupt changes of pressure, density, etc. Across shock waves, 
they are profitably used in supersonic compressors to obtain considerably high 
pressure ratios in one stage; in such compressors the pressure ratio developed per 

stage may be as high as 10.0. The thickness of such waves is of the order of 
310 −

mm which is comparable with mean free path of the gas molecules. 
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 Figure shows a normal shock wave in a constant area frictionless duct, the shock 
wave is considered to be contained in a control volume.  
 As the mathematical expressions which derive the non linear problems of 
propagation of shocks in conducting radiative medium an analytical solution may be 
obtained as far as possible but in most cases it become very difficult to achieve a 
complete solutions due to its non-linearly .  
 In such case, solutions shall be derived numerically on a computer by many well 
known methods such as Runga-Kutta approximetors or Newton’s Rephoson and other 
iterative methods. These approximate solutions however still project a near-complete 
picture of patterns of pressure, temperature density and velocity distributions across 
these discontinuities. 
 However with the expansion of knowledge computer softwares.It is now a day 
more prominent to achieve the numerical approximations in case a analytical solution 
is not obtained various software such as RKGS etc. are available to cope up such 
difficulties and an approximate numerical solutions may easily be achieved in getting 
non-linear equations.  
 it is therefore,proposed that the non-linear equations shall be integrated with the 
help these software whenever required. The respective physical parameter thus, will 
exhibit the pattern of flow and field distribution (of course with the help of graph 
theory) of problem. Jeffrey and Taniuti (1964),the solution of Riemann problems is 
generally not unique in the sense of the weak solution and other conditions should be 
imposed to single out the physically relevant one. 
 Entropy condition, which admits only the shocks across which the entropy 
increases. The entropy condition discards manifestly unphysical solutions which 
include expanding shocks, across which the entropy is decreased. Takashi and 
Yamada (2013),In ideal MHD, some initial conditions have more than one solutions 
that satisfy the entropy condition . Therefore the so-called evolutionary conditions are 
introduced, which define physically relevant shocks should be structurally stable. 
Structurally stable shocks just remain close to the initial discontinuity.  
 If 00 ≠M  and 1ˆ >u  The solutions of (2.21)-(2.23) is compressed as it passes 
through the discontinuities, are called shock waves. In this case the magnetic fields 
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are either planar or coplanar. If 1ˆ >u and 01 ˆ nn uuu = ,then we get A
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,Transverse magnetic fields are coplanar if and only if the upstream flow velocity is 
super Alfvenic whereas the downstream speed is sub-Alfvenic. The shocks with 
planar transverse magnetic fields are either fast or slow shocks.The shocks that 
change the direction of transverse magnetic fields are referred to as intermediate 
shocks. 
 
 
4. MHD in Astrophysical  
The solar magnetic fields that wave in some may connected with sun’s rotation imply 
large scale magnetic fields may appear in a rapidly rotating planet. The rotation of 
planet in the presence of a magnetic field is controlled by laws of isorotation i.e. field 
is symmetric about the axes of rotation and each line of force lies wholly on a surface 
.The matter in the Sun is in a plasma state, that is, an ionised gas with enough 
abundance of free charges. One way to have a reasonable description of the plasma 
under solar conditions, among other applications is magneto hydrodynamics.The 
effect of magnetic fields to the dynamics and evolution of astrophysical plasmas 
comes from observations of the outer layers of the Sun.The dynamo activity involves 
patterns of magnetohydrodynamics flows, the interaction of differential rotation and 
convection needed to magnetic field in large scale.Both the presence of sunspots in 
the photosphere, and structures such as filaments, prominences, and flares in the solar 
corona, demonstrate the key role that magnetic fields play in shaping the dynamics. In 
fact, the very existence of the hot corona is now interpreted as due to heating by MHD 
effects.. 
 It is thought that most of the magnetic activity of the Sun is driven by the 
combination of rotation and turbulent flows in the convection zone. In fact, the 
properties of MHD turbulence driven by convection was one of the problems that first 
interested Chandra in plasma physics. 
 Understanding the origin and evolution of the Sun’s magnetic field via a dynamo 
process has been a challenging problem for many decades. In addition to generation 
of the dipole field due to differential rotation,aprocess first proposed by Parker 
(1955),there are also small-scale mult ipole fields thought to be generated by the 
convective turbulence that play a role in shaping sunspots and coronal activity. Both 
the processes that produce sunspots, and the large-scale magnetic field of the Sun, are 
very active areas of research. 
 In the case of sunspots, direct numerical simulations of magneto convection in the 
outer layers, including realistic radiative transfer to capture the outer radiative zone, 
can now reproduce details of observed sunspots, including the penumbral filaments; a 
beautiful example is given in Rempel et al. (2009) .In the case of the solar dynamo, 
the dipole field is now thought to originate in the tachocline, a region of strong shear 
between the radiative core (which is in solid body rotation, according to results from 
helioseismology) and the outer convective zone (which is in differential rotation) . 
However, although the sophistication of modern global MHD simulations of 
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magnetoconvection in spherical and rotating stars is impressive, they still fail to 
explain both the origin of the differential rotation in the convective zone, and the 
origin of the cyclic dipole field. Solving the solar dynamo problem is important, as we 
are unlikely to understand magnetic fields in other stars if we cannot first understand 
the Sun. These phenomenon usually occur in stellar atmosphere where turbulence in 
medium is more often .many more scientists discover that in stanleous energy release 
along a line cylindrical shocks or along point, spherical shocks may propagate with 
increasing strength without limit .  
 The non-dimensional similarly conditions define the pattern of propagation of 
such motions and hence,,it will be a matter of great interest if it is analysed whether 
the motion of these discontinuities strong or weak really propagate with high energy 
yields in the problems solar photosphere rocket reentry fission fusion reactions etc. 
One method to investigate the properties of MHD turbulence is through direct 
numerical simulation .Lemaster and Stone (2009),Numerical simulations of highly 
compressible MHD turbulence with both strong and weak magnetic fields. The 
turbulence is driven with a forcing function whose power spectrum is highly peaked 
at a wav enumber corresponding to about 1/8 the size of the computational domain. 
The energy input rate of the driving is held constant, and the turbulence is driven so 
that the Alfvenic Mach number of the turbulence is about one in the strong field case, 
and 7 in the weak The spectrum of fluctuations, such simulations can be used to 
measure properties such as the decay rate of the turbulence, and how it depends on the 
magnetic field strength. Early predictions suggested the decay rate of strongly 
magnetized turbulence would be very low, since it would be dominated by 
incompressible Alfv´en waves. Stone, Ostriker & Gammie (1999),The simulations 
found the decay rate of supersonic MHD turbulence was very fast, with the decay 
time about equal to an eddy turn over time on . 
 
 
5.Conclusion:- 
Converging and diverging shocks generated by instanteous energy release over a 
cylindrical and spherical surface in a conducting medium are of great interest amongst 
the scientists working in area of solar explosions, detonations, steller turbulence and 
other astrophysical phenomenon. If the effect of such discontinuities are formulated 
and these pattern is observed it is a very helpful in designing the space crafts and 
other missiles entering in such turbulent medium where occurrence these 
discontinuities is quite regular.  
 It is therefore, our efforts to provide a complete scenarios of physical distributions 
which may cause severe hazards to well calculated missiles entering in such medium. 
Goldreich & Sridhar (1995),The theories of the power spectrum and statistical 
properties of MHD turbulence can be tested and compared . It is quite clear from the 
images that in the weak field case, the density fluctuations are isotropic, and the 
magnetic field is highly tangled. Goldreich & Sridhar (1995), In the strong field case 
the density fluctuations are elongated along the field lines, and the field is more or less 
ordered. The suggests that the power spectrum of the turbulence will be anisotropic.  
 It is impossible to describe studies of Astrophsical MHD shocks without 
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mentioning the important role that numerical method.The types of waves generated 
and their order are not known a priori in Magneto hydrodynamics Riemann 
solver..Solution of Riemann are used to obtain numerical fluxes. 
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