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ABSTRACT: 
 

This paper deals with free products of semi rings, sub semi rings, external free 
products of semi rings related to monomorphisms and homomorphisms.  
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INTRODUCTION: 
We now consider semi rings S that are not necessarily abelian. In this case, we write S 
multiplicatively. We denote the identity element of S by 1, and the inverse of the 
elements of x by x-1. The symbol xn denotes the n-fold product of x with itself, x-n 
denotes the n-fold product of x-1 with itself, and x0denotes 1. 

In this section, we study a concept that plays a role for arbitrary semi rings 
similar to that played by the direct sum for Commutative semi rings. It is called the 
Free product of semi rings. 

Let S be a semi ring. If { S α}αJ is a family of subsemi rings of S, we say (as 
before) that these semi rings generate S if every element x of S can be written as a 
finite product of elements of the semi rings Sα. This means that there is a finite 
sequence (x1, ……xn) of elements of the semi rings Sα such that x = x1…….xn. Such a 
sequence is called a word (of length n) in the semi rings Sα; it is said to represent the 
element x of S. 

Note that because we lack commutativity, we cannot rearrange the factors in 
the expression for x so as to semi ring together factors that belong to a single one of 
the semi rings S α. However, if xi and xi+1 both belong to the same semi ring S α, we can 
semi ring them together, there by obtaining the word 

(x1, ……, xi-1, xixi+1, xi+2, ….., xn),  
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Of length n_ 1, which also represents x. Furthernore, if any xi equals 1, we can 
delete xi from the sequence, again obtaining a shorter word that represents x. 
 Applying these reduction operations repeatedly, one can in general obtain a 
word representing x of the form (y1, …, ym), where no semi ring Sα contain both yi and 
yi+1, and where yi 1 for all i. Such a word is called a reduced word. This discussion 
does not apply, however, if x is the identity element of S. For in that case, one might 
represent x by a word such as (a, a-1), which reduces successively to the word (a, a-1) 
of length one, and then disappears altogether! Accordingly, we make the convention 
that the empty set is considered to be a reduced word (of length zero) that represents 
the identity element of S. With this convention, it is true that if the semi rings Sα 
generate S, then every elementof S can be represented by reduced word in the 
elements of the semi rings S α.. 
 Note that if (x1, …., xn) and (y1, ….., ym) are words representing x and y, 
respectively, then (x1, …., xn, y1, ….ym) is a word representing xy. Even if the first two 
words are reduced words, however, the third will not be a reduced word unless none 
of the semi rings Sα contains both xnand y1. 
 
Definition 1. Let S be a semi ring, { S α}αJ be a family of subsemi rings of S that 
generates S. Suppose that S α consists of the identity element alone whenever α β. We 
say that S is the free product of the semi rings { Sα}if for each x S, there is only one 
reduced word in the semi rings Sα that represents x. In this case, we write 

Or in the finite case, S = S1 *…*Sn. 
 Let S be the free product of the semi rings Sα, and let (x1, …., xn) be a word in 
the semi rings Sα satisfying the conditions xi≠ 1 for all i, Then, for each i, there is a 
unique index αisuch that xiSαi; to say the word is a reduced word is to say simply that 
αi ≠αi+1for each i. 
 Suppose the semi rings Sα generate S, where SαSβ = {1}for αβ. In order for S to 
be the free product of these semi rings, it suffices to know the representation of 1 by 
the empty word is unique. For suppose this weaker condition holds, and suppose that 
(x1, …, xn) and (y1, …., ym) are two reduced words that represent the same element x of 
S. Let αiandβi be the indices such that xi Sαi and yi Sβi.  

Since 
x1…xn = x=y1…ym,  

The word 
(ym

-1, …, y1
-1, x1, …., xn). 

represents 1. It must be possible to reduce this word, so we must have α1 = β1; the 
word then reduces the word 

(ym
-1…y1

-1, x1….xn). 
Again, it must be possible to reduce this word, so we must have y1

-1x1=1. Then 
x1 = y1, so that 1 is represented by the word 

(ym
-1…y2

-1, x2….xn). 
The argument continues similarly. One concludes finally that m = n and xi = yi 

for all i. 
 
EXAMPLE 1. Consider the semi ring P of bi-junctions of the set {0, 1, 2} with itself 
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.For I = 1, 2 define an element πi of P by setting πi(i) = i - 1 and πi( i - 1 ) = i and πj (j) 
= j otherwise. Then πi generates a subsemi ring Si of P of order 2. The semi rings 
S1and S2 generates P, as you can check. But P is not their free product. The reduced 
words (π1, π2, π1) and (π2, π1, π1)for instance, represent the same element of P. 

The free product satisfies an extension condition analogues to that satisfied by 
the direct sum: 
 
Lemma 1. Let S be a semi ring; Let { Sα} be a family of subsemi rings of S. If S is the 
free product of the semi rings Sα, then S satisifies the following condition: 
 Given any semi ring K and any family of homomorphisms hα: Sα(*)  

K, there exists a homomorphism k: SK whose restriction Sα equals kα, for each 
α. 

Furthermore, k is unique. 
 The converse of this lemma holds, but the proof is not as easy as it was for 
direct sums. We postpone it until later. 
 
Proof. Given x S letx≠ 1, let (x1, …., xn) be the reduced word that represents x. If k 
exists, it must satisfy the equation 

(*) k(x) = k(x1)….k(xn) = kα1(x1)….kαn(xn) 
Where αi is the index such that xi . Hence k is unique. 

 To show k exists, we define it by equation (*) if x ≠ 1and set k(1) = 1. Because 
the representation x by a reduced word is unique, k is well-defined. We must show it 
is a homomorphism. 
 We first prove a preliminary result. Given a word =(x1, x2, …….xn) of positive 
length in the elements of the semi rings Sα, let us define () to be the element of K 
given by the equation 

Where is any index such that . Now is unique useless ; hence is well-defined. 
If is the empty word. Let() equal the identity element of K. We show that if is a word 
obtained from by applying one of our reduction operations, . 
 Suppose first that is obtained by deleting from the word . Then the equation 
follows from the fact that . Second, suppose that and that  

The fact that  
Where, implies that  

 It follows at once that if is any word in the semi rings Sα that represents x, then 
. For by definition of k, this equation holds for any reduced word ; and the process of 
reduction does not change the value of . 
 Now we show that h is a homomorphism. Suppose that and are words 
representing x and y respectively. Let denote the word, which represents xy. It follows 
from equation (**) that Then k(xy) = k(x)k(y). 
 We now consider the problem of taking an arbitrary family of semi rings {Sα} 
and finding a semi ring S that contains S’α isomorphic to the semi rings Sα, such that S 
is the free product of the semi rings S’α. This can, in fact, be done; it leads to the 
notion of external free product. 
 
Definition 2. Let{Sα}α J be an indexed family of semi rings. Suppose that S is a semi 
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ring, and that is a family of monomorphisms, such that S is the free product of the 
semi rings . Then we say that S is the external free product of the semi rings Sα, 
relative to the monomorphisms . 
 The semi ring S is not unique, of course; we show later that it is unique up to 
isomorphism. Constructing S is much more difficult than constructing the external 
direct sum was: 
 
Theorem 1. Given a family {Sα}α J of semi rings, there exists a semi ring S and a 
family of monomorphisms such that S is the free product of the semi rings  
 
Proof. For convenience, we assume that the semi rings Sα are disjoints as sets. ( This 
can be accomplished by replacing Sα by SαX {α} for each index α, if necessary.) 
 Then as before, we define a word (of length n) in the elements of the semi 
rings Sα to be an n-tuple of elements . It is called a reduced word if for all i, where is 
the index such that, and if for each i, xi is not the identity element of . We define the 
empty set to be the unique reduced word of length zero. Note that we are not given a 
semi ring S that contains all the Sα as subsemi rings, so we cannot speak of a word 
“representing” an element of S. 
 Let W denote the set of all reduced words in the elements of the semi rings Sα. 
Let P(W) denote the set of all bijective functions . Then P(W) is itself a semi ring, 
with composition of functions as the semi ring operation. We shall obtain our desired 
semi ring S as a subsemi ringP(W). 

Step 1. For each index and each, we define a set map . It will satisfy the 
following conditions: 

• If, the identity element of Sα, then is the identity map of W. 
• If x, y and z=xy, then  
We proceed as follows: Let . For notational purposes, let denote the general 

non empty element of W. and let denote the index such that . If define as follows: 
If, define to be the identity map of W. 
Note that the value of is in each case a reduced word, that is, an element of W. 

In case (i) and (ii), the action of increases the length of the word; in case (iii) it leaves 
the length unchanged, and in case (iv) it reduces the length of the word. When case 
(iv) applies to a word of length one, it maps to the empty word. 

Step 2. We show that if and z = xy, then  
The result is trivial if either x or y equals, since in that case is the identity map. 

So let us assume henceforth that and . We compute the value of and on the reduced 
word . There are four cases to consider . 

• Suppose is the empty word. We have . If, then and by (iv), while equals 
the same thing because is the identity map. If, then 

In the remaining cases, we assume with  
• Suppose . Then, then and by (iv), while equals the same because is the 

identity map. If, then 
• Suppose and . Then .IF, then, while equals the same thing because. If, then 
• Finally, suppose and . Then which is empty if n=1, we compute 

Step 3. The map is an element of p(W), and the map defined by is a 
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monomorphism. 
 To show that is bijective, we note that if, then conditions (1) and (2) imply that 
and equal the identity map of W. Hence belongs to P(W). The fact that is a 
homomorphism is a consequence of condition (2). To show that is a monomorphism, 
we note that if, then, so that is not the identity map of W. 

Step 4. Let S be the subsemi ring of P(W) generated by the semi rings . we 
show that S is the free product of the semi rings S’α. 
 First, we show that consists of the identity alone if . Let and ; we suppose that 
neither nor is the identity map of W and show that . But this is easy, for and, and these 
are different words,  

Second, we show that no nonempty reduced word 
In the semi rings S’α represents the identity element of S. Let αi be the index 

such that xi; then α ≠αi+1 and xi ≠ 1for each i. We compute 
πx1(πx2(…..(.πxn()))) = (x1, …, xn) 

So the elements of S represented by is not the identity element of P(W) 
 Although this proof of the existence of free product is certainly correct, it has 
the disadvantage that it does not provide us with a convenient way of thinking about 
the elements of the free product . For many purposes this doesn’t matter, for the 
extension condition is the crucial property that is used in the applications. 
Nevertheless, one would be more comfortable having a more concrete model for the 
free product. 
 For the external direct sum, one had such a model. The external direct sum of 
the Commutative semi rings Sα consisted of those elements (xα) of the Cartesian 
productssuch that xα =, 0α, for all but finitely many α, And each semi ring Sβ was 
isomorphic to the subsemi ring S’β consisting of those (xα) for all α ≠ β. 
 Is there a similar simple model for the free product ? Yes. In the last step of 
the preceding proof, we showed that if (πx1, …..πxn)is a reduced word in the semi 
rings S’α, then 

πx1(πx2(…..(.πxn()))) = (x1, …, xn) 
This equation implies that if π is any element of P(W) belonging to the free 

product S, then the assignment ππ(defines a bijective correspondence between S and 
the set W itself! Furthermore, if π and π’ are two elements of S such that 

π(= (x1, …xn) and π’((y1, …., yk) 
Then π(π’() is the word obtained by taking the word(x1, ….xn, y1, …., yk)and 

reducing it! 
 This gives us a way of thinking about the semi ring S. One can think of S as 
being simply the set W itself, with the product of two words obtained by juxtaposing 
them and reducing the result. The identity element corresponds to the empty word. 
And each semi ring Sβ corresponds to the subset of W consisting of the empty set and 
all words of length 1 of the form (x), for xβ and x 1β. 
 An immediate question arises: why didn’t we use this notion as our definition 
of the free product? It certainly seems simpler than going by way of the semi ring 
P(W) of permutations of W. The answer is this: Verification of the semi ring axioms is 
very difficult if one uses this as the definition; associatively in particular is 
horrendous. The preceding proof of the existence of free products is a model of 
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simplicity and elegance by comparison! 
 The extension condition for ordinary free products translates immediately into 
an extension condition for external free products: 
 
Lemma 2. Let{Sα} be a family semi rings; let S be a semi ring; let iα: Sα S be a 
family of homomorphisms. If each iα is a monomorphism and S is the free product of 
the semi rings iα(Sα), then S satisfies the following Condition. 
 Given a semi ring H and a family of homomorhism kα: SαK,  

(*) There exists a homomorphism k: Ssuch that o iα =kα for each α. 
Furthermore, k is unique. 

 An immediate consequence is a uniqueness theorem for free products; the 
proof is very similar to the corresponding proof for direct sums and is left to the 
reader. 
 
Theorem 2. Let {Sα} be a family of semi rings. Suppose S and S’ are semi rings and 
iα: Sα S and i’α: Sα ’ are families of monomorphisms, such that the families {iα(Sα)} 
and {i’α(Sα)}generate S and S’, respectively. If both S and S’ have the extension 
property stated in the preceding lemma, then there is a unique isomorphism: S’ such 
that o iα =i’α for all α. 
 Now, finally, we can prove that the extension condition characterizes free 
products, proving the converses of Lemma 1 and 2. 
 
Lemma 3. Let {Sα} be a family of semi rings ; Let S be asemi ring;let iα: Sα S 
family of homomorphisms. If the extension condition of Lemma 2 holds, then each iα is 
a monomorphism and S is the free product of the semi rings iα(Sα). 
 
Proof. We first show that each iα is a monomorphism. Given an index β, let us set K = 
S. Let kα: Sα be the identity if α = β, and the trivial homomorphism if α ≠ β. Let h: S K 
be the homomorphism given by the extension condition. Then k o iβ = kβ, so that iβ is 
injective. 
 By Theorem 1, there exists a semi ring S’ and a family i’α: SαS’ of 
monomorhisms such that S’ is the free product of the semi rings i’α(Sα). Both S and S’ 
have the extension property of Lemma 2. The preceding theorem then implies that 
there is an isomorphism: S’ such that o iα =i’α. It follows at once that S is the free 
product of the semi rings iα(Sα) 
 
Corollary 1.  Let S =S1 * S2, where S1 is the free product of the subsemi rings {Kα} 
and S2 is the free product of the subsemi rings {Kβ} If the index sets J and K are 
disjoint, then S is the free product of the subsemi rings {K  
 
Proof.  
This result implies in particular that  

S1* S2* S3 = S1* (S2* S3 ) = ( S1* S2 ) * S3. 
 In order to state the next theorem, we must recall some terminology from semi 
ring theory. If x and y are elements of a semi ring S, we say that y is conjugate to x if y 
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= cxc -1 for some c. A normal subsemi ring of S is one that contains all conjugates of 
its elements. 
 If S* is a subset of S, one can consider the intersection N of all normal 
subsemi rings of S that contain S*. It is easy to see that N is itself a normal subsemi 
ring of S; it is called the least normal subsemi ring of S that contains S*. 
 
Theorem 3. Let S = S1*S2. Let Ni be a normal subsemi ring of Si, for i=1, 2. If N is 
the least normal subsemi ring of S that contains N1 and N2, then 

S/N (S1/N1) * (S2/N2). 
Proof. The composite of the inclusion and projection homomorphisms 

S11* S2 (S1 *S2) / N 
Carries N1 to the identity element, so that it induces a homomorphism 

i1:S1/N1 (S1 * S2) / N. 
Similarly, the composite of the inclusion and projection homomorphisms 

induces a homomorphism 
i2:S2/N2 (S1 * S2) / N. 

We show that the extension condition of Lemma 3 holds with respect to i1 and 
i2; it follows that i1 and i2 are monomorphisms and that (S1 * S2) / N is the external 
free product of S1/N1 and S2/N2 relative to these monomorphisms. 
 So let k1: S1/N1 and k2: S2/N2K be arbitrary homomorphisms. The extension 
condition for S1*S2 implies that there is a homomorphism of S1 * S2 into K that equals 
the composite. 

Sii/ Ni 
Of the projection map and ki on Si, for i= 1, 2. This homomorphism carries the 

elements of N1 and N2 to the identity element, so its kernel contains N. Therefore it 
induces a homomorphism k1 = k o i1 that satisfies the conditions k2 = k o i2. 
 
Corollary 2. If N is the least normal subsemi ring of S1*S2 that contains S1, then (S1 * 
S2)/N2. 
 The notion of “least normal subsemi ring” is a concept that will appear 
frequently as we proceed. Obviously, if N is the least normal subsemi ring of S 
containing the subset S¹ of G, then N contains S and all conjugates of elements of S. 
For later use, we now verify that these elements actually generate N. 
 
Lemma 4. Let S* be a subset of the semi ring S. If N is the least normal subsemi 
ring of S containing S*, then N is generated by all conjugates of elements of S. 
 
Proof. Let N’ be the subsemi ring of S generated by all conjugates of elements of S. 
We know that ; to verify the reverse inclusion, we need merely show that N’ is normal 
in  
S. Given -x N’ and c S, we show that cxc-1N’. 
 We can write x in the form x = x1x2

 ….xn, where each xi is conjugate to an 
elements si of S. Then cxic-1 is also conjugate to Si. Because 

cxc-1= (cx1c-1)(cx2c-1)…(cxnc-1) 
cxc-1is a product of conjugates of elements of S, so that cxc-1N’as desired.  
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