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Abstract

In this paper a new type of one step iteration for self mappings is introduced
under certain conditions in normed linear space and studied with quas
contractive mapping and quasi contractive pair of mappings.
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1INTRODUCTION
Let X be a nonempty closed convex subset of a normed linear space E and

T:X — X be aself mapping and{X,} be the sequence then for arbitrary X, € X
Mann[4] iteration process is defined as
Xy =(1-4,) %, + A4, Tx, for n>0

Similarly Ishikawa[3] iteration process for{ X, } is given by
X1 = (1_ ﬁn ) X, + //LnTyn
and y, =(1- 4, )%, + A4 Tx,, forn=0

Wherex, € X is arbitrary and {4,},{4,} are sequences of real numbers such
that
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By using the concept of Mann iteration process Sahu[5] introduced a new G-
iteration process as follows:

Let T be aself mapping of Banach space then G-iteration process associated by T
isdefined as, Let X,, X € X and

Xz = (Mo = A0) Xoa + A TKp + (1= 4,) TX,  for n20

Where {u,} and {4} satisfy

()4, =, =1
(i)0< A, <Ln>0and u,=A4, for n>0
(ii)limA, =h>0

N—oc0

(iv)limu, =1

Das and Debata [1] generalized the Ishikawa iteration processes from the case of
one self mapping to the case of two self mappings S and T of X given by

Xn+1:(l_ ﬂn)xn +/1n%/n
and y, =(1- 4, )%, + A4 Tx,, forn=0

By using above iteration Das and Debata[ 1] established the common fixed points
of quasi-non expansive mappings in a uniformly convex Banach space.Severa other
researchers such as Takahashi and Tamura[6] investigated iteration in a strictly
convex Banach spacefor the case of two nonexpansive mappings under different
assumptions and contractive conditions.

In this paper a new type of one step iteration for self mappings is introduced and
studied with a contractive type conditions of Sahu[5].The result obtained in this paper
extend and improve the corresponding results of Dhage[2] and Sahu [5].

2. PRELIMINARIES
Theorem 2.1: Dhage[2] has proved afixed point theorem satisfying the inequality

[ <aljx- ¢+ [y
(a-2ama ey -y -y ) 5 )

Definition 2.3: Let X beanormed spaceand T : X — X isasaf mapping then T
is said to satisfy a Lipschitz condition with constant q if
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Mx—Ty||< ql|x—y| VX, ye X
If 0 <1thenT iscalled acontraction mapping.

Definition 2.4: Let X be a normed space then a self mapping T of X is caled
quas contractive mapping if

=Ty < amax{flx—y].|x=T].[ly =Ty[.,[x=Ty]. |y - T}
Vx,ye X, where0<qg<1.

Sahu[5]extend the above definition for a pair of mapping in the following

manner:-

Definition 2.5: Let X be a normed space then T,and T, be two self mappings of
X iscalled quasi contractive pair of mapping if
[Tox=T,y] < amax{x =y, [x =T,y =T,y [x = T.y]. |y - T}
Vx,ye X, where0<q<1.

Recursion-2.6

Letx,x € Xad

Xyz =Uh =4 =8, +H( A +8) T + Ut =4+ + (4, -k )X, forn=0
where{ .} ,{4,}.{k,} and {s,} satisfying

(i) 0<A4,<1,0<k,<1,0<s<1 forn>0.
(i), 2 A1, 2K, 4,25, for n=0.

(iVlim__A=lim__s =Ilim__k =& wherel>0.
MIlim___u, =1,
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Recursion-2.7

Letx,x e Xad

Yoo =y == § o H A5 T+, =4, +HOTX +( =K )%,

ad X3 :(/41 _/?n _§1)in+2 +(ﬂn +$1)T2X2m2 +(1_l41 _ﬂn +K1)-|1X2n+1+(ﬂn _K1)sz1 ,fan=0

whee(u} {4} {kand{s seisfyirg

0 =A=k=1

(i) O<4<1,0<k<1,0<s<1 fan>Q

(i), A1, 2K,, 14,25, farn=Q,

Wlim,_, 4=im,_,.s=lim_ K =¢ whees>0

(lim, .4 =1

3.MAIN RESULTS
Theorem 3.1: Let X be aclosed convex subset of normed linear space N and let
T:X—>X be a quas contractive self mapping of  X.Suppose that

{u.} {2} .{k,}and{s,] are real sequencesin[0,1].For two arbitrary x,,x, € X
define the sequence { X, } by the recursion (2.6). If limx, = ze X then z isthe fixed

point of T.

Proof:-If {X.} convergeson ze X
ie limx =z.

N—oo

We shall show that Z isthefixed pointof T .
Consider

|z=T4z—x.J+{%,.-T4
2% WA HAS) Bt —A KT A% T4
7%, H b= —5) T4 H A +$) [0 T4+~ A, ) [T%,—T4
HAk)|x-T4
JzxdHu-4-s)%.—T
HA+s)anax, 4 .- |z .- |z} 3L
HIp =4+ ~Td+H A k) |x -T2

We observe by the definition of G-iteration that
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%1 =Tl < ﬂhﬁ g P o+ M% Hml T+ M% \M |
and
HZ—%HSHZ—M\H\m—w\
e e R A

Now putting above values in (3.1.1) then we have

|z Tz M—%—% P

bt %M%ﬁﬁﬁ

praopd S

7 H>s “|z 4,
Hxﬂ ﬂ\ H>s -

(4+s)
bRl
=4k H A K%

Letting N — oothen we have
|z-TZ| < (1-2£ + 2¢£q)|z-T]

= |z-TZ|=0 Since0<qg<land{ >0

H At e

%+% (4+s)

Hence z=Tz isafixed pointof T .

Remark: When{S }={0} {x,} ={1 and{4,} ={k,} then above G-iterative
process reduces to Mann iteration.

Theorem 3.2: Let X be aclosed convex subset of normed linear space N and let
T,andT, be quas contractive pair of self mappings of X Suppose that

{u.},{2,}.{k,}and{s,] are real sequences in[0,1].For two arbitrary x,, X, € X
define the sequence {X,} by the recursion (2.7). If limx, =ze X then z is the

N—oo

common fixed point of T, andT,.

Proof:-If {X.} convergeson ze X
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ie limx =z.

N—oo

We shall show that Z isthefixed pointof T .

Consider

|2=Ti <[z Xn.5]| + [ Xonis =7

L 2%d et A= H A+ Do H Ut k1 +H(A )% T

J2%d Hth=A~5 )T HA+S) Do T H 114~ 456,07

"'(%_K)“sz_-g‘

2% H =4 =) oo =T
HA+9) amex|| X, =7 P T 2T [ 2- T T} (3:2)
Hlph A+ T~ A4 k) a4

We observe by the definition of G- iterati on that

e e (L W P
and
Bideond b
oo T T

Now putting above valuesin (3.2.1) then we have
[2=Td <[z Xons] + (4= = $) P~ T4

HXM Z|\|z-74,
(1-4,) (ﬂh—kn)
sz 2 X2n+3H n HX2n+2_-|—1X2n+lH+ Hx2n+l_Tlx2 1H
(A +s)qmax (ﬂh+sn (4 +s) o
M,
|2=Yoneo] + Aﬁsn sz 2= Yonis] + ey H o — ><2n+2H ﬂh+sn me TXona)
%2~ T4

+(1_/un _/lh + kn)HTlXZn+1 _TIZH +(/,ih - kn)HX2n+1_TIZH

Letting N — oo then we have
|z-T,24|< @-2¢ +280)|z-T,Z]
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=|z-T,7|=0 Since0<g<land{ >0

Hence z=T,z isafixed point of T,.
Similarly we can show that

|z-T,7|< @-2& + 2£q)|z-T,7
=||z-T,Z|=0 Since0O<q<landé >0

Hence z=T,z zisafixed pointof T,.
Finally we can say that Z is acommon fixed point of T, & T,.
This completes the proof of theorem.
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