# Fixed Point Results with a New Type of G-iteration in Normed Linear Spaces

## Krati Shukla and Deepak Singh Kaushal

Institute for Excellence in Higher Education, Bhopal (M.P.)
email: kratika0902@gmail.com
Sagar Institute of Science, Technology & Research, Bhopal (M.P.)
email:deepaksinghkaushal@yahoo.com

#### **Abstract**

In this paper a new type of one step iteration for self mappings is introduced under certain conditions in normed linear space and studied with quasi contractive mapping and quasi contractive pair of mappings.

**Keywords:-**Common fixed point, Contractive condition, G-iteration, Mann iteration.

**Mathematics Subject Classification:** 47H10,54H25.

# 1.INTRODUCTION

Let X be a nonempty closed convex subset of a normed linear space E and  $T:X\to X$  be a self mapping and  $\left\{x_n\right\}$  be the sequence then for arbitrary  $x_0\in X$  Mann[4] iteration process is defined as

$$x_{n+1} = (1 - \lambda_n) x_n + \lambda_n T x_n$$
 for  $n \ge 0$ 

Similarly Ishikawa[3] iteration process for  $\{x_n\}$  is given by

$$x_{n+1} = (1 - \lambda_n) x_n + \lambda_n T y_n$$
  
and  $y_n = (1 - \lambda_n) x_n + \lambda_n T x_n$ , for  $n \ge 0$ 

Where  $x_0 \in X$  is arbitrary and  $\{\lambda_n\}, \{\lambda_n'\}$  are sequences of real numbers such that

$$0 \le \lambda_n \le 1$$
,  $0 \le \lambda_n \le 1$ .

By using the concept of Mann iteration process Sahu[5] introduced a new Giteration process as follows:

Let T be a self mapping of Banach space then G-iteration process associated by T is defined as, Let  $x_0, x_1 \in X$  and

$$x_{n+2} = (\mu_n - \lambda_n)x_{n+1} + \lambda_n T x_{n+1} + (1 - \mu_n) T x_n$$
 for  $n \ge 0$ 

Where 
$$\{\mu_n\}$$
 and  $\{\lambda_n\}$  satisfy

(i) 
$$\lambda_0 = \mu_0 = 1$$

(ii) 
$$0 < \lambda_n < 1, n > 0$$
 and  $\mu_n \ge \lambda_n$  for  $n \ge 0$ 

(iii) 
$$\lim_{n\to\infty} \lambda_n = h > 0$$

(iv) 
$$\lim_{n\to\infty} \mu_n = 1$$

Das and Debata [1] generalized the Ishikawa iteration processes from the case of one self mapping to the case of two self mappings S and T of X given by

$$x_{n+1} = (1 - \lambda_n) x_n + \lambda_n S y_n$$
  
and  $y_n = (1 - \lambda_n) x_n + \lambda_n T x_n$ , for  $n \ge 0$ 

By using above iteration Das and Debata[1] established the common fixed points of quasi-non expansive mappings in a uniformly convex Banach space. Several other researchers such as Takahashi and Tamura[6] investigated iteration in a strictly convex Banach space, for the case of two nonexpansive mappings under different assumptions and contractive conditions.

In this paper a new type of one step iteration for self mappings is introduced and studied with a contractive type conditions of Sahu[5]. The result obtained in this paper extend and improve the corresponding results of Dhage[2] and Sahu [5].

#### 2. PRELIMINARIES

Theorem 2.1: Dhage[2] has proved a fixed point theorem satisfying the inequality

$$||Tx - Ty|| \le a(||x - Tx|| + ||y - Ty||)$$

$$+(1-2a)\max\left\{\|x-y\|,\|x-Ty\|,\|y-Ty\|,\frac{1}{2}(\|x-Tx\|+\|y-Ty\|),\frac{1}{2}(\|x-Ty\|+\|y-Tx\|)\right\}$$

**Definition 2.3:** Let X be a normed space and  $T: X \to X$  is a self mapping then T is said to satisfy a Lipschitz condition with constant q if

$$||Tx - Ty|| \le q ||x - y|| \qquad \forall x, y \in X$$

If q < 1 then T is called a contraction mapping.

**Definition 2.4:** Let X be a normed space then a self mapping T of X is called quasi contractive mapping if

$$||Tx - Ty|| \le q \max\{||x - y||, ||x - Tx||, ||y - Ty||, ||x - Ty||, ||y - Tx||\}$$
  
 $\forall x, y \in X, where 0 < q < 1.$ 

Sahu[5]extend the above definition for a pair of mapping in the following manner:-

**Definition 2.5:** Let X be a normed space then  $T_1$  and  $T_2$  be two self mappings of X is called quasi contractive pair of mapping if

$$||T_1x - T_2y|| \le q \max\{||x - y||, ||x - T_1x||, ||y - T_2y||, ||x - T_2y||, ||y - T_1x||\}$$

$$\forall x, y \in X, where \ 0 < q < 1.$$

#### Recursion-2.6

Let  $x_0, x_1 \in X$  and

$$x_{n+2} = (\mu_n - \lambda_n - s_n)x_{n+1} + (\lambda_n + s_n)Tx_{n+1} + (1 - \mu_n - \lambda_n + k_n)Tx_n + (\lambda_n - k_n)x_n \text{ for } n \ge 0$$
where  $\{\mu_n\}, \{\lambda_n\}, \{k_n\}$  and  $\{s_n\}$  satisfying

- (*i*)  $\mu_0 = \lambda_0 = k_0 = 1$
- (ii)  $0 < \lambda_n < 1$ ,  $0 < k_n < 1$ ,  $0 < s_n < 1$  for n > 0.
- (iii)  $\mu_n \ge \lambda_n, \mu_n \ge k_n, \mu_n \ge s_n$  for  $n \ge 0$ .
- $(iv)\lim_{n\to\infty} \lambda_n = \lim_{n\to\infty} s_n = \lim_{n\to\infty} k_n = \xi \quad \text{where } \xi > 0.$
- $(v)\lim_{n\to\infty}\mu_n=1.$

## **Recursion-2.7**

Let  $x_0, x_1 \in X$  and

$$\begin{split} x_{2n+2} = & (\mu_n - \lambda_n - \mathbf{s}_n) x_{2n+1} + (\lambda_n + \mathbf{s}_n) T_1 x_{2n+1} + (1 - \mu_n - \lambda_n + k_n) T_2 x_{2n} + (\lambda_n - k_n) x_{2n} \\ \text{and} \quad x_{2n+3} = & (\mu_n - \lambda_n - \mathbf{s}_n) x_{2n+2} + (\lambda_n + \mathbf{s}_n) T_2 x_{2n+2} + (1 - \mu_n - \lambda_n + k_n) T_1 x_{2n+1} + (\lambda_n - k_n) x_{2n+1} \text{, for } n \geq 0 \\ \text{where} \{\mu_n\}, \{\lambda_n\}, \{k_n\} \text{ and } \{s_n\} \text{ satisfying} \end{split}$$

(i) 
$$\mu_0 = \lambda_0 = k_0 = 1$$

(ii) 
$$0 < \lambda_n < 1$$
,  $0 < k_n < 1$ ,  $0 < s_n < 1$  for  $n > 0$ .

$$(iii)\mu_n \ge \lambda_n, \mu_n \ge k_n, \mu_n \ge s_n$$
 for  $n \ge 0$ .

$$(iv)\lim_{n\to\infty}\lambda_n=\lim_{n\to\infty}s_n=\lim_{n\to\infty}k_n=\xi$$
 where  $\xi>0$ .

$$(v)\lim_{n\to\infty}\mu_n=1.$$

## 3.MAIN RESULTS

**Theorem 3.1:** Let X be a closed convex subset of normed linear space N and let  $T: X \to X$  be a quasi contractive self mapping of X. Suppose that  $\{\mu_n\}, \{\lambda_n\}, \{k_n\} \ and \{s_n\}$  are real sequences in [0,1]. For two arbitrary  $x_0, x_1 \in X$  define the sequence  $\{x_n\}$  by the recursion (2.6). If  $\lim_{n\to\infty} x_n = z \in X$  then z is the fixed point of T.

**Proof:-**If 
$$\{x_n\}$$
 converges on  $z \in X$  i.e.  $\lim_{n \to \infty} x_n = z$ .

We shall show that z is the fixed point of T. Consider

$$\begin{aligned} \|z - Tz\| &\leq \|z - x_{n+2}\| + \|x_{n+2} - Tz\| \\ &\leq \|z - x_{n+2}\| + \|(\mu_n - \lambda_n - s_n)x_{n+1} + (\lambda_n + s_n)Tx_{n+1} + (1 - \mu_n - \lambda_n + k_n)Tx_n + (\lambda_n - k_n)x_n - Tz\| \\ &\leq \|z - x_{n+2}\| + (\mu_n - \lambda_n - s_n)\|x_{n+1} - Tz\| + (\lambda_n + s_n)\|Tx_{n+1} - Tz\| + (1 - \mu_n - \lambda_n + k_n)\|Tx_n - Tz\| \\ &\qquad \qquad + (\lambda_n - k_n)\|x_n - Tz\| \\ &\leq \|z - x_{n+2}\| + (\mu_n - \lambda_n - s_n)\|x_{n+1} - Tz\| \\ &\qquad \qquad + (\lambda_n + s_n)q\max\{\|x_{n+1} - Tz\|, \|x_{n+1} - Tx\|, \|x_{n+1} - Tz\|, \|x_{n+1$$

We observe by the definition of G-iteration that

$$\left\| x_{n+1} - Tx_{n+1} \right\| \le \frac{1}{\left(\lambda_n + s_n\right)} \left\| x_{n+1} - x_{n+2} \right\| + \frac{(1 - \mu_n)}{\left(\lambda_n + s_n\right)} \left\| x_{n+1} - Tx_n \right\| + \frac{\left(\lambda_n - k_n\right)}{\left(\lambda_n + s_n\right)} \left\| x_n - Tx_n \right\|$$

and

$$\begin{split} & \left\| z - Tx_{n+1} \right\| \leq \left\| z - x_{n+1} \right\| + \left\| x_{n+1} - Tx_{n+1} \right\| \\ & \leq \left\| z - x_{n+1} \right\| + \frac{1}{\left(\lambda_n + s_n\right)} \left\| x_{n+1} - x_{n+2} \right\| + \frac{(1 - \mu_n)}{\left(\lambda_n + s_n\right)} \left\| x_{n+1} - Tx_n \right\| + \frac{\left(\lambda_n - k_n\right)}{\left(\lambda_n + s_n\right)} \left\| x_n - Tx_n \right\| \end{split}$$

Now putting above values in (3.1.1) then we have

$$||z-Tz|| \le ||z-x_{n+2}|| + (\mu_n - \lambda_n - s_n)||x_{n+1} - Tz||$$

$$+ (\lambda_{n} + s_{n})q_{\text{TTAK}} \left\{ \begin{aligned} \|x_{n+1} - z\|_{1} & \frac{1}{(\lambda_{n} + s_{n})} \|x_{n+1} - x_{n+2}\| + \frac{(1 - \mu_{n})}{(\lambda_{n} + s_{n})} \|x_{n+1} - Tx_{n}\|_{1} + \frac{(\lambda_{n} - k_{n})}{(\lambda_{n} + s_{n})} \|x_{n} - Tx_{n}\|_{1} \|z - Tz\|_{1}, \\ \|x_{n+1} - Tz\|_{1} & \frac{1}{(\lambda_{n} + s_{n})} \|x_{n+1} - x_{n+2}\|_{1} + \frac{(1 - \mu_{n})}{(\lambda_{n} + s_{n})} \|x_{n+1} - Tx_{n}\|_{1} + \frac{(\lambda_{n} - k_{n})}{(\lambda_{n} + s_{n})} \|x_{n} - Tx_{n}\|_{1} \\ & + (1 - \mu_{n} - \lambda_{n} + k_{n}) \|Tx_{n} - Tz\|_{1} + (\lambda_{n} - k_{n}) \|x_{n} - Tz\|_{1} \end{aligned} \right\}$$

Letting  $n \rightarrow \infty$  then we have

$$||z - Tz|| \le (1 - 2\xi + 2\xi q) ||z - Tz||$$
  
 $\Rightarrow ||z - Tz|| = 0 \text{ Since } 0 < q < 1 \text{ and } \xi > 0$ 

Hence z = Tz is a fixed point of T.

**Remark:** When  $\{S_n\} = \{0\}, \{\mu_n\} = \{1\} \text{ and } \{\lambda_n\} = \{k_n\} \text{ then}$  above G-iterative process reduces to Mann iteration.

**Theorem 3.2:** Let X be a closed convex subset of normed linear space N and let  $T_1$  and  $T_2$  be quasi contractive pair of self mappings of X. Suppose that  $\{\mu_n\}, \{\lambda_n\}, \{k_n\}$  and  $\{s_n\}$  are real sequences in [0,1]. For two arbitrary  $x_0, x_1 \in X$  define the sequence  $\{x_n\}$  by the recursion (2.7). If  $\lim_{n\to\infty} x_n = z \in X$  then z is the common fixed point of  $T_1$  and  $T_2$ .

**Proof:-**If  $\{x_n\}$  converges on  $z \in X$ 

i.e. 
$$\lim_{n\to\infty} x_n = z$$
.

We shall show that z is the fixed point of T.

Consider

$$\begin{split} & \|z - T_{1}z\| \leq \|z - x_{2n+3}\| + \|x_{2n+3} - T_{1}z\| \\ & \leq \|z - x_{2n+3}\| + \|(\mu_{n} - \lambda_{n} - s_{n})x_{2n+2} + (\lambda_{n} + s_{n})T_{2}x_{2n+2} + (1 - \mu_{n} - \lambda_{n} + k_{n})T_{1}x_{2n+1} + (\lambda_{n} - k_{n})x_{2n+1} - T_{1}z\| \\ & \leq \|z - x_{2n+3}\| + (\mu_{n} - \lambda_{n} - s_{n})\|x_{2n+2} - T_{1}z\| + (\lambda_{n} + s_{n})\|T_{2}x_{2n+2} - T_{1}z\| + (1 - \mu_{n} - \lambda_{n} + k_{n})\|T_{1}x_{2n+1} - T_{1}z\| \\ & + (\lambda_{n} - k_{n})\|x_{2n+1} - T_{1}z\| \\ & \leq \|z - x_{2n+3}\| + (\mu_{n} - \lambda_{n} - s_{n})\|x_{2n+2} - T_{1}z\| \\ & + (\lambda_{n} + s_{n})q\max\{\|x_{2n+2} - z\|, \|x_{2n+2} - T_{2}x_{2n+2}\|, \|z - T_{1}z\|, \|z - T_{2}x_{2n+2}\|, \|x_{2n+2} - T_{1}z\|\} \quad (3.2.1) \\ & + (1 - \mu_{n} - \lambda_{n} + k_{n})\|T_{1}x_{2n+1} - T_{1}z\| + (\lambda_{n} - k_{n})\|x_{2n+1} - T_{1}z\| \end{split}$$

We observe by the definition of G-iteration that

$$\|x_{2n+2} - T_2 x_{2n+2}\| \le \frac{1}{(\lambda_n + s_n)} \|x_{2n+2} - x_{2n+3}\| + \frac{(1 - \mu_n)}{(\lambda_n + s_n)} \|x_{2n+2} - T_1 x_{2n+1}\| + \frac{(\lambda_n - k_n)}{(\lambda_n + s_n)} \|x_{2n+1} - T_1 x_{2n+1}\|$$

and

$$\begin{split} & \left\| z - T_{2} x_{2n+2} \right\| \leq \left\| z - x_{2n+2} \right\| + \left\| x_{2n+2} - T_{2} x_{2n+2} \right\| \\ & \leq \left\| z - x_{2n+2} \right\| + \frac{1}{(\lambda_{n} + s_{n})} \left\| x_{2n+2} - x_{2n+3} \right\| + \frac{(1 - \mu_{n})}{(\lambda_{n} + s_{n})} \left\| x_{2n+2} - T_{1} x_{2n+1} \right\| + \frac{(\lambda_{n} - k_{n})}{(\lambda_{n} + s_{n})} \left\| x_{2n+1} - T_{1} x_{2n+1} \right\| \end{split}$$

Now putting above values in (3.2.1) then we have  $||z-T_1z|| \le ||z-x_{2n+3}|| + (\mu_n - \lambda_n - s_n)||x_{2n+2} - T_1z||$ 

$$+ (\lambda_{n} + s_{n})q \max \begin{cases} \|x_{2n+2} - z\|, \|z - T_{1}z\|, \\ \frac{1}{(\lambda_{n} + s_{n})} \|x_{2n+2} - x_{2n+3}\| + \frac{(1 - \mu_{n})}{(\lambda_{n} + s_{n})} \|x_{2n+2} - T_{1}x_{2n+1}\| + \frac{(\lambda_{n} - k_{n})}{(\lambda_{n} + s_{n})} \|x_{2n+1} - T_{1}x_{2n+1}\|, \\ \|z - x_{2n+2}\| + \frac{1}{(\lambda_{n} + s_{n})} \|x_{2n+2} - x_{2n+3}\| + \frac{(1 - \mu_{n})}{(\lambda_{n} + s_{n})} \|T_{1}x_{2n+1} - x_{2n+2}\| + \frac{(\lambda_{n} - k_{n})}{(\lambda_{n} + s_{n})} \|x_{2n+1} - T_{1}x_{2n+1}\|, \\ \|x_{2n+2} - T_{1}z\| \end{cases}$$

$$+(1-\mu_{n}-\lambda_{n}+k_{n})\|T_{1}x_{2n+1}-T_{1}z\|+(\lambda_{n}-k_{n})\|x_{2n+1}-T_{1}z\|$$

Letting 
$$n \to \infty$$
 then we have  $||z - T_1 z|| \le (1 - 2\xi + 2\xi q) ||z - T_1 z||$ 

$$\Rightarrow ||z - T_1 z|| = 0$$
 Since  $0 < q < 1$  and  $\xi > 0$ 

Hence  $z = T_1 z$  is a fixed point of  $T_1$ .

Similarly we can show that

$$||z - T_2 z|| \le (1 - 2\xi + 2\xi q) ||z - T_2 z||$$
  
 $\Rightarrow ||z - T_2 z|| = 0$  Since  $0 < q < 1$  and  $\xi > 0$ 

Hence  $z = T_2 z$  z is a fixed point of  $T_2$ .

Finally we can say that z is a common fixed point of  $T_1 \& T_2$ .

This completes the proof of theorem.

# Acknowledgement

Authors are thankful to Dr. S.S. Pagey Professor Institute for Excellence in Higher Education Bhopal for his encouragement and kind help in the preparation of this paper.

# **References**

- [1] Das,G and Debata, J. P. Fixed points of Quasi-non expensive mappings- Indian Journal of Pure and applied Mathematics vol 17 (1986) 1263-1269.
- [2] Dhage B.C. On common fixed point maps in Banach spaces Acta Ciencia Indica vol XII no. 1 (1987) 1-5.
- [3] Ishikawa, S. Fixed points by new iteration methods Proc. Of the Amer. Math. Soc. Vol 44 (1974) 147-150.
- [4] Mann, W.R. "Mean value methods in iterations" Proc. Of the Amer. Math. Soc. Vol 4 (1953), 506-510.
- [5] Sahu, N.K Some fixed point theorems on Quasi contractive mapping, Pure and applied Mathematika Sciences vol XXXII no. 1-2 (1990) 53-57
- [6] Takahashi, W and Tamura, T. Convergence Theorems for a pair of non expansive mappings. Journal of Convex Analysis vol 5 No. 1 (1995) 45-58.