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Abstract
In this paper we introduce new class of spaces such as �̂-regular and �̂-normal
spaces and investigate the basic properties of these spaces via �̂-closed sets.
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1. Introduction

Levine [6] initiated the study of generalized closed sets (briefly g-closed) in general
topology. The concept of weak separation axioms such as g-regular and g-normal spaces
are introduced and investigated by Munshi [7] by utilizing g-closed sets. The objective
is to introduce and study new separation axioms namely �̂-regular and �̂-normal spaces
and their properties by applying �̂-closed sets.

2. Preliminaries

Throughout this paper (X, τ ) (or briefly X) represent a topological space with no sepa-
ration axioms assumed unless otherwise explicitly stated. For a subset A of (X, τ ), we
denote the closure of A, the interior of A and the complement of A as cl(A), int(A) and
Ac respectively. The family of all open (resp. δ-open, �̂-open) sets on X are denoted
by O(X) (resp. δO(X), �̂O(X)). The family of all �̂-closed sets on X are denoted by
�̂C(X).
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• O(X, x) = {U ∈ X : x ∈ U ∈ O(X)}
• δO(X, x) = {U ∈ X : x ∈ U ∈ δO(X)}
• �̂O(X, x) = {U ∈ X : x ∈ U ∈ �̂O(X)}
Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. [9] A subset A of X is called δ-closed in a topological space (X, τ )
if A = δcl(A), where δcl(A) = {x ∈ X : int(cl(U )) ∩ A �= ∅, U ∈ O(X, x)}. The
complement of δ-closed set in (X, τ ) is called δ-open set in (X, τ ). From [1], lemma
3, δcl(A) = ∩{F ∈ δC(X) : A ⊆ F } and from corollary 4, δcl(A) is a δ-closed for a
subset A in a topological space (X, τ ).

Definition 2.2. A subset A of a topological space (X, τ ) is called

(i) semiopen set in [5] (X, τ ) if A ⊆ cl(int(A)).

(ii) �̂-closed set [2] if δcl(A) ⊆ U whenever A ⊆ U and U is semi open in (X, τ ).

The complement of �̂-closed (resp. semi open) is said to be �̂-open (resp. semi closed).

Definition 2.3. A function f : (X, τ ) → (Y , σ ) is said to be �̂-irresolute if f −1(V ) is
�̂-open set in (X, τ ) for every �̂-open set V in (Y , σ ).

Definition 2.4. A space X is said to be [4]

(i) �̂-T0 if for any distinct pair of points x and y of X, there exists a �̂-open set U of
X containing x but not y (or) containing y but not x.

(ii) �̂-T1 if for any distinct pair of points x and y of X, there exists a �̂-open set U of
X containing x but not y and a �̂-open set V of X containing y but not x.

(iii) �̂-T2 if for any distinct pair of points x and y of X, there exists disjoint �̂-open
sets U and V of X containing x and y respectively.

Definition 2.5. A space X is said to be R0 [8] if for every open set U such that x ∈ U ,
then cl({x}) ⊆ U .

3. �̂-regular and �̂-normal spaces

Definition 3.1. A space is said to be �̂-regular if for every closed set F and each point
x /∈ F , there exists two disjoint �̂-open sets U and V in X such that F ⊆ U , x ∈ V.

Example 3.2. If X = {a, b, c} and τ = {∅, {a}, {b, c}, X}, then �̂O(X) = P(X). It is
�̂-regular.
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Theorem 3.3. Every �̂-regular and T0 space is �̂-T2 space.

Proof. Suppose that x and y are any two disjoint points of X. Since X is T0, there exists
an open set U in (X, τ ) containing any one of these points.Without loss of generality,
assume that x ∈ U and y /∈ U. Therefore, X \ U is a closed set and x /∈ X \ U. By the
�̂-regularity of X, there exists disjoint �̂-open sets V and W such that X \ U ⊆ V and
x ∈ W. Now we have two disjoint �̂-open sets U and V such that x ∈ W and y ∈ V.

Thus (X, τ ) is a �̂-T2 space. �

Theorem 3.4. If (X, τ ) is �̂-regular and semi-T 1
2
, then X is regular.

Proof. Suppose that x ∈ X is arbitrary and F is any closed set in X such that x /∈ F . By
hypothesis, there exists two disjoint �̂-open sets U and V in X such that F ⊆ U , x ∈ V .
By [3] theorem 3.17, U and V are open sets in X. Therefore, X is regular. �

Let us characterize �̂-regular space as follows.

Theorem 3.5. In a topological space (X, τ ) the following statements hold.

(i) X is �̂-regular.

(ii) For each x ∈ X and each open set U containing x, there is a �̂-open set V

containing x such that �̂cl(V ) ⊆ U.

(iii) For every non-empty set A,disjoint from an open set U , there exists a �̂-open set
V such that A ∩ V �= ∅ and �̂cl(V ) ⊆ U .

(iv) For every non-empty set A,disjoint from a closed set F , there exists two disjoints
�̂-open subsets U and V of X such that A ∩ V �= ∅ and F ⊆ U .

Proof. i) ⇒ ii) Suppose that U is any open set in (X, τ ) and x ∈ X such that x ∈ U.

Then X \ U is a closed set does not containing x. Since X is �̂-regular, there exists two
disjoint �̂-open sets V and W such that X \ U ⊆ W , x ∈ V ⊆ �̂cl(V ). Suppose that
z ∈ X such that z /∈ U , then z ∈ X \ U ⊆ W. Now W is a �̂-open set containing z such
that V ∩ W = ∅. By [2] theorem 5.11, z /∈ �̂cl(V ) and hence �̂cl(V ) ⊆ U. Now we
have a �̂-open set V containing x such that �̂cl(V ) ⊆ U.

ii) ⇒ iii) Suppose that A is a non-empty set which is disjoint from a open subset U of
X. Choose x ∈ A ∩ U . Then, U is a open set containing x. By hypothesis, there exits
a �̂-open subset V of X such that x ∈ V ⊆ �̂cl(V ) ⊆ U . Therefore, x ∈ A ∩ V which
implies that A∩V �= ∅. Thus, there exists a �̂-open subset V of X such that A∩V �= ∅
and �̂cl(V ) ⊆ U .
iii) ⇒ iv) Suppose that A is a non-empty set which is disjoint from a closed subset F

of X. Then, X \ F is a open set such that A ∩ X \ F �= ∅. By hypothesis, there exists a
�̂-open subset V of X such that A∩V �= ∅ and �̂cl(V ) ⊆ X\F . Then F ⊆ X\�̂cl(V ),
where X \ �̂cl(V ) is a �̂-open subset of X. By letting U = X \ �̂cl(V ), it is shown that
there exists two disjoint �̂-open sets U and V in X such that A ∩ V �= ∅ and F ⊆ U .
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iv) ⇒ i) Suppose that F is any closed subset of X and x /∈ F . Then A ∩ F = ∅,
where A = {x}. By hypothesis, there exists two disjoint �̂-open sets U and V such that
A ∩ V �= ∅ and F ⊆ U . It is shown that there exists two disjoint �̂-open sets U and V

such that, x ∈ V and F ⊆ U . Thus, X is �̂-regular. �

Theorem 3.6. A space X is �̂-regular if and only if for each x ∈ X and every closed
set F such that x /∈ F , there exists V ∈ �̂O(X, x) such that �̂cl(V ) ∩ F = ∅.

Proof. Necessity-Suppose that x ∈ X and F is any closed set in X such that x /∈ F .
Then X \ F is an open set in X containing x. By hypothesis, there exists a �̂-open set
V containing x such that �̂cl(V ) ⊆ X \ F. Thus, �̂cl(V ) ∩ F = ∅.
Sufficiency-Suppose that x ∈ X is arbitrary and F is any closed set in X such that
x /∈ F . By hypothesis, there exists V ∈ �̂O(X, x) such that �̂cl(V ) ∩ F = ∅. Then
F ⊆ X \ �̂cl(V ). If U = X \ �̂cl(V ), then U is a �̂-open set such that F ⊆ U , x ∈ V

and U ∩ V = ∅. Thus, X is is �̂-regular. �

Theorem 3.7. A space X is �̂-regular if and only if for every closed subset F and for
each x /∈ F , there exists �̂-open subsets U and V of X such that x ∈ U and F ⊆ V and
cl(U ) ∩ cl(V ) = ∅.

Proof. Necessity-Suppose that F is any closed set not containing the point x of X. By
hypothesis, there exists there exists two disjoint �̂-open sets Ux and V in X such that
F ⊆ V , x ∈ U . Then,Ux ∩cl(V ) = ∅. Since cl(V ) is a closed subset of X not containing
x, again by hypothesis, there exists two disjoint �̂-open sets G and W in X such that
cl(V ) ⊆ W and x ∈ G. Then, cl(G) ∩ W = ∅. Put U = Ux ∩ G, then U is a �̂-open
set disjoint from V and x ∈ U , F ⊆ V . Moreover, cl(U ) ∩ cl(V ) ⊆ cl(G) ∩ W = ∅.
Sufficiency-Suppose that for every closed subset F not containing a point x of X, there
exists �̂-open subsets U and V of X such that x ∈ U and F ⊆ V and cl(U )∩cl(V ) = ∅.
Then U ∩ V ⊆ cl(U ) ∩ cl(V ) = ∅. Thus, X is a �̂-regular space. �

Theorem 3.8. Let Y be both open and pre-closed set in a �̂-regular space (X, τ ). Then
the subspace (Y , τ |Y ) is �̂-regular.

Proof. Suppose that F1 is closed in (Y , τ |Y ) and x be any point in X such that x ∈ Y \F1.
Then F1 = F ∩ Y for some closed set F in X. Since x ∈ Y \ F1, x /∈ F . By hypothesis,
there exists disjoint �̂-open sets U and V in X such that F ⊆ U , x ∈ V . By [2] theorem
6.10, U∩Y andV ∩Y are disjoint �̂-open sets in (Y , τ |Y ) such that F1 ⊆ U∩Y , x ∈ V ∩Y .
Therefore, (Y , τ |Y ) is �̂-regular. �

Theorem 3.9. Let X be a �̂-regular space. If A is �̂-closed relative to X, then A is
gp-closed subset of X.

Proof. Suppose that X is a �̂-regular space and A is any �̂-closed relative to X. Let U

be any open subset of X such that A ⊆ U . Let x ∈ A be arbitrary. Then U is an open
subset of X such that x ∈ U . By theorem 3.5 (ii), there is a �̂-open set Vx containing
x such that �̂cl(Vx) ⊆ U . Then the family {Vx : x ∈ A, x ∈ V and �̂cl(Vx) ⊆ U} is
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a �̂-open cover of A. Since A is �̂-closed relative to X, there exists a finite number of

points x1, x2, . . . , xn in A such that A ⊆
i=n⋃

i=1

�̂cl(Vxi
) ⊆ U . By [2] remark 5.2, each

�̂cl(Vxi
) is �̂-closed and by [2] theorem 4.12, finite union of �̂-closed sets is �̂-closed

set in X. Then, A ⊆ �̂cl(A) ⊆
i=n⋃

i=1

�̂cl(Vxi
) ⊆ U . Since pcl(A) ⊆ �̂cl(A), it follows

that A is gp-closed subset of X. �

Theorem 3.10. If f : (X, τ ) → (Y , σ ) is continuous bijective such that every �̂-open
set is �̂-open,then the image of a �̂-regular space is �̂-regular.

Proof. Suppose that (X, τ ) is a �̂-regular space and y ∈ Y be arbitrary and F is any
closed set in Y such that y /∈ F . Since f is surjective, y = f (x) for some x ∈ X. Since f

is continuous, f −1(F ) is a closed set in X such that x /∈ f −1(F ). Since X is �̂-regular,
there exists disjoint �̂-open sets U and V in X such that x ∈ U and f −1(F ) ⊆ V .
By hypothesis, f (U ) and f (V ) are disjoint �̂-open sets in Y such that y ∈ f (U ) and
F ⊆ f (V ). Therefore, Y is �̂-regular space. �

Theorem 3.11. If f : (X, τ ) → (Y , σ ) is closed injective �̂-irresolute and Y is �̂-
regular, then X is �̂-regular space.

Proof. Suppose that (Y , σ ) is a �̂-regular space and x ∈ X be arbitrary and F is any
closed set in X such that x /∈ F . Since f is closed, f (F ) is a closed set in Y such that
f (x) /∈ f (F ). Since Y is �̂-regular, there exists disjoint �̂-open sets U and V in Y such
that f (x) ∈ U and f (F ) ⊆ V . Since f is �̂-irresolute, f −1(U ) and f −1(V ) are disjoint
�̂-open sets in X such that x ∈ f −1(U ) and F ⊆ f −1(V ). Therefore, Y is �̂-regular
space. �

Definition 3.12. A space (X, τ ) is said to be �̂-normal if for every pair of disjoint closed
sets A and B of X, there exists a pair of disjoint �̂-open sets Uand V such that A ⊆ U

and B ⊆ V .

Example 3.13. If X = {a, b, c} and τ = {∅, {a}, {b}, {a, b}, {a, c}, X}, then �̂O(X) = τ .
Here X is �̂-normal.

Theorem 3.14. Every �̂-regular space is �̂-normal.

Proof. Suppose that A and B are any pair of disjoint closed sets in X and x ∈ A. Then
x /∈ B. By hypothesis, there exists disjoint �̂-open sets Ux and Vx such that x ∈ Ux and
B ⊆ Vx . If we take U =

⋃

x∈A

Ux , then by [2] theorem 4.16, U is �̂-open set in X such

that A ⊆ U . Also U ∩ Vx = ∅. Thus,X is �̂-normal. �

Remark 3.15. It is noted from the example 3.10 that �̂-normal space can not, in general,
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be �̂-regular space.

Let us prove the necessary condition under which �̂-normal space become �̂-regular.

Theorem 3.16. If a space X is �̂-normal and R0,then X is �̂-regular space.

Proof. Suppose that F is any closed set in X and x ∈ X \ F is an arbitrary point.
Then X \ F is open in X containing x. Since X is R0, cl({x}) ⊆ X \ F and hence
cl({x}) ∩ F = ∅. Since X is �̂-normal,there exists a pair of disjoint �̂-open sets U and
V in X such that cl({x}) ⊆ U and F ⊆ V . Therefore, x ∈ U , F ⊆ V and U ∩ V = ∅.
Thus, X is �̂-regular space. �

Some characterizations of �̂-normal spaces.

Theorem 3.17. A space X is �̂-normal if and only if for every closed set A and every
open set B containing A, there exists a �̂-open set U in X such that A ⊆ U ⊆ cl(U ) ⊆ B.

Proof. Necessity-Suppose that X is �̂-normal. Suppose that A is any closed set and
B is any open set in X such that A ⊆ B. Then A and X \ B are a pair of disjoint
�̂-closed sets in X. By hypothesis, there exists a pair of �̂-open sets U and V in X

such that A ⊆ U , X \ B ⊆ V Then A ⊆ U ⊆ X \ V ⊆ B. By [2] remark 5.2,
A ⊆ U ⊆ �̂cl(U ) ⊆ X \ V ⊆ B.
Sufficiency-Suppose that A and B are disjoint �̂-closed sets in X. Then A ⊆ X \ B.
By hypothesis, there exists a �̂-open set U in X such that A ⊆ U ⊆ cl(U ) ⊆ X \ B. If
V = X \ �̂cl(U ), then V is a �̂-open set in X such that A ⊆ U , B ⊆ V and U ∩V = ∅.
Thus, X is �̂-normal. �

Theorem 3.18. A space (X, τ ) is �̂-normal if and only if for every pair of disjoint closed
sets A and B of X, there exists a �̂-open set U in X containing A and �̂cl(U ) ∩ B = ∅.

Proof. Necessity-Suppose that X is a �̂-normal space and suppose that A and B are any
two disjoint closed sets in X. Then A ⊆ X \ B. By theorem 3.14, there exists a �̂-open
set U in X such that A ⊆ U ⊆ �̂cl(U ) ⊆ X \ B. Then �̂cl(U ) ∩ B = ∅.
Sufficiency-Suppose that A and B are any two disjoint closed sets in X. By hy-
pothesis,there exists a �̂-open set U in X containing A and �̂cl(U ) ∩ B = ∅. If
V = X \ �̂cl(U ), then V is a �̂-open set in X containing B such that U ∩V = ∅. Thus,
X is �̂-normal. �

Theorem 3.19. Let X be semi-T 1
2
. Then a space X is �̂-normal if and only if for every

pair of disjoint closed sets A and B of X, there exists a pair of �̂-open sets Uand V such
that A ⊆ U and B ⊆ V and �̂cl(U ) ∩ �̂cl(V ) = ∅.

Proof. Necessity-Suppose that A and B are any two disjoint closed sets in X. Then
A ⊆ X \ B. By theorem 3.15, there exists a �̂-open set U in X such that A ⊆ Uand
�̂cl(U ) ∩ B = ∅. Since �̂cl(U ) is a �̂-closed set and by [3] theorem 3.17, �̂cl(U ) is a
closed set in X. Again by hypothesis, there exists a �̂-open set V in X such that B ⊆ V



Note on new Classes of Separation axioms 183

and �̂cl(U ) ∩ �̂cl(V ) = ∅.
Sufficiency-Suppose that A and B are any two disjoint closed sets in X. By hypothesis,
there exists a pair of �̂-open sets Uand V such that A ⊆ U and B ⊆ V and
�̂cl(U ) ∩ �̂cl(V ) = ∅. Thus, U ∩ V = ∅ and hence X is �̂-normal. �

Theorem 3.20. Let Y be both open and closed set in a �̂-normal space (X, τ ). Then the
subspace (Y , τ |Y ) is �̂-normal.

Proof. Suppose that A and B are disjoint closed subsets of (Y , τ |Y ). Since Y is closed
subset of X. A and B are closed a subset of X. Since X is �̂-normal, there exists
a disjoint pair of �̂-open subsets U1 and U2 of X such that A ⊆ U1 and B ⊆ V1.
Take U = U1 ∩ Y and V = V1 ∩ Y . By [2] theorem 6.10, U and V are �̂-open
sets in the subspace (Y , τ |Y ). Since U1 and V1 are disjoint, U and V are disjoint and
A = A ∩ Y ⊆ U1 ∩ Y = U , B = B ∩ Y ⊆ V1 ∩ Y = V . Therefore, (Y , τ |Y ) is
�̂-normal. �

Theorem 3.21. If f : (X, τ ) → (Y , σ ) is continuous bijective such that every �̂-open
set is �̂-open, then image of a �̂-normal space is �̂-normal.

Proof. Suppose that (X, τ ) is a �̂-normal space and A and B are any two disjoint closed
sets in Y . Since f is continuous, f −1(A) and f −1(B) are disjoint closed sets in X. Since
X is �̂-normal, there exists disjoint �̂-open sets U and V in X such that f −1(A) ⊆∈ U

and f −1(B) ⊆ V . By hypothesis, f (U ) and f (V ) are disjoint �̂-open sets in Y such
that A ∈ f (U ) and B ⊆ f (V ). Therefore, Y is �̂-normal space. �

Theorem 3.22. If f : (X, τ ) → (Y , σ ) is closed injective �̂-irresolute and Y is �̂-
normal, then X is �̂-normal space.

Proof. Suppose that (Y , σ ) is a �̂-normal space and A and B are any two disjoint closed
sets in X. Since f is closed, f (A) and f (B) are closed sets in Y . Since f is injective,
f (A) and f (B) are disjoint closed sets in Y . Since Y is �̂-normal, there exists disjoint
�̂-open sets U and V in Y such that f (A) ⊆ U and f (B) ⊆ V . Since f is �̂-
irresolute, f −1(U ) and f −1(V ) are disjoint �̂-open sets in X such that A ⊆ f −1(U )
and B ⊆ f −1(V ). Therefore, Y is �̂-normal space. �
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