Note on new Classes of Separation axioms

M. Lellis Thivagar

School of Mathematics, Madurai Kamaraj University, Madurai-625021, Tamilnadu, India. E-mail: mlthivagar@yahoo.co.in

M. Anbuchelvi

Department of Mathematics, V.V. Vanniaperumal College for Women, Virudhunagar-626001, Tamilnadu, India. E-mail: rsanbuchelvi@gmail.com

Abstract

In this paper we introduce new class of spaces such as $\hat{\Omega}$ -regular and $\hat{\Omega}$ -normal spaces and investigate the basic properties of these spaces via $\hat{\Omega}$ -closed sets.

AMS subject classification: 57D05. **Keywords:** Semi open sets, δ -open sets, δ -closure, *sker*, $\delta\omega$ -closed sets.

1. Introduction

Levine [6] initiated the study of generalized closed sets (briefly g-closed) in general topology. The concept of weak separation axioms such as g-regular and g-normal spaces are introduced and investigated by Munshi [7] by utilizing g-closed sets. The objective is to introduce and study new separation axioms namely $\hat{\Omega}$ -regular and $\hat{\Omega}$ -normal spaces and their properties by applying $\hat{\Omega}$ -closed sets.

2. Preliminaries

Throughout this paper (X, τ) (or briefly X) represent a topological space with no separation axioms assumed unless otherwise explicitly stated. For a subset A of (X, τ) , we denote the closure of A, the interior of A and the complement of A as cl(A), int(A) and A^c respectively. The family of all open (resp. δ -open, $\hat{\Omega}$ -open) sets on X are denoted by O(X) (resp. $\delta O(X)$, $\hat{\Omega} O(X)$). The family of all $\hat{\Omega}$ -closed sets on X are denoted by $\hat{\Omega}C(X)$.

- $O(X, x) = \{ U \in X : x \in U \in O(X) \}$
- $\delta O(X, x) = \{U \in X : x \in U \in \delta O(X)\}$
- $\hat{\Omega}O(X, x) = \{U \in X : x \in U \in \hat{\Omega}O(X)\}$

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. [9] A subset A of X is called δ -closed in a topological space (X, τ) if $A = \delta cl(A)$, where $\delta cl(A) = \{x \in X : int(cl(U)) \cap A \neq \emptyset, U \in O(X, x)\}$. The complement of δ -closed set in (X, τ) is called δ -open set in (X, τ) . From [1], lemma 3, $\delta cl(A) = \cap\{F \in \delta C(X) : A \subseteq F\}$ and from corollary 4, $\delta cl(A)$ is a δ -closed for a subset A in a topological space (X, τ) .

Definition 2.2. A subset A of a topological space (X, τ) is called

- (i) semiopen set in [5] (X, τ) if $A \subseteq cl(int(A))$.
- (ii) $\hat{\Omega}$ -closed set [2] if $\delta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) .

The complement of $\hat{\Omega}$ -closed (resp. semi open) is said to be $\hat{\Omega}$ -open (resp. semi closed).

Definition 2.3. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $\hat{\Omega}$ -irresolute if $f^{-1}(V)$ is $\hat{\Omega}$ -open set in (X, τ) for every $\hat{\Omega}$ -open set V in (Y, σ) .

Definition 2.4. A space *X* is said to be [4]

- (i) Ω̂-T₀ if for any distinct pair of points x and y of X, there exists a Ω̂-open set U of X containing x but not y (or) containing y but not x.
- (ii) $\hat{\Omega}$ - T_1 if for any distinct pair of points x and y of X, there exists a $\hat{\Omega}$ -open set U of X containing x but not y and a $\hat{\Omega}$ -open set V of X containing y but not x.
- (iii) $\hat{\Omega}$ - T_2 if for any distinct pair of points x and y of X, there exists disjoint $\hat{\Omega}$ -open sets U and V of X containing x and y respectively.

Definition 2.5. A space X is said to be R_0 [8] if for every open set U such that $x \in U$, then $cl(\{x\}) \subseteq U$.

3. $\hat{\Omega}$ -regular and $\hat{\Omega}$ -normal spaces

Definition 3.1. A space is said to be $\hat{\Omega}$ -regular if for every closed set F and each point $x \notin F$, there exists two disjoint $\hat{\Omega}$ -open sets U and V in X such that $F \subseteq U, x \in V$.

Example 3.2. If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$, then $\hat{\Omega}O(X) = \mathcal{P}(X)$. It is $\hat{\Omega}$ -regular.

Theorem 3.3. Every $\hat{\Omega}$ -regular and T_0 space is $\hat{\Omega}$ - T_2 space.

Proof. Suppose that x and y are any two disjoint points of X. Since X is T_0 , there exists an open set U in (X, τ) containing any one of these points. Without loss of generality, assume that $x \in U$ and $y \notin U$. Therefore, $X \setminus U$ is a closed set and $x \notin X \setminus U$. By the $\hat{\Omega}$ -regularity of X, there exists disjoint $\hat{\Omega}$ -open sets V and W such that $X \setminus U \subseteq V$ and $x \in W$. Now we have two disjoint $\hat{\Omega}$ -open sets U and V such that $x \in W$ and $y \in V$. Thus (X, τ) is a $\hat{\Omega}$ - T_2 space.

Theorem 3.4. If (X, τ) is $\hat{\Omega}$ -regular and *semi-T*₁, then X is regular.

Proof. Suppose that $x \in X$ is arbitrary and F is any closed set in X such that $x \notin F$. By hypothesis, there exists two disjoint $\hat{\Omega}$ -open sets U and V in X such that $F \subseteq U, x \in V$. By [3] theorem 3.17, U and V are open sets in X. Therefore, X is regular.

Let us characterize $\hat{\Omega}$ -regular space as follows.

Theorem 3.5. In a topological space (X, τ) the following statements hold.

- (i) X is $\hat{\Omega}$ -regular.
- (ii) For each $x \in X$ and each open set U containing x, there is a $\hat{\Omega}$ -open set V containing x such that $\hat{\Omega}cl(V) \subseteq U$.
- (iii) For every non-empty set A, disjoint from an open set U, there exists a $\hat{\Omega}$ -open set V such that $A \cap V \neq \emptyset$ and $\hat{\Omega}cl(V) \subseteq U$.
- (iv) For every non-empty set A, disjoint from a closed set F, there exists two disjoints $\hat{\Omega}$ -open subsets U and V of X such that $A \cap V \neq \emptyset$ and $F \subseteq U$.

Proof. i) \Rightarrow ii) Suppose that *U* is any open set in (X, τ) and $x \in X$ such that $x \in U$. Then $X \setminus U$ is a closed set does not containing *x*. Since *X* is $\hat{\Omega}$ -regular, there exists two disjoint $\hat{\Omega}$ -open sets *V* and *W* such that $X \setminus U \subseteq W, x \in V \subseteq \hat{\Omega}cl(V)$. Suppose that $z \in X$ such that $z \notin U$, then $z \in X \setminus U \subseteq W$. Now *W* is a $\hat{\Omega}$ -open set containing *z* such that $V \cap W = \emptyset$. By [2] theorem 5.11, $z \notin \hat{\Omega}cl(V)$ and hence $\hat{\Omega}cl(V) \subseteq U$. Now we have a $\hat{\Omega}$ -open set *V* containing *x* such that $\hat{\Omega}cl(V) \subseteq U$.

ii) \Rightarrow iii) Suppose that *A* is a non-empty set which is disjoint from a open subset *U* of *X*. Choose $x \in A \cap U$. Then, *U* is a open set containing *x*. By hypothesis, there exits a $\hat{\Omega}$ -open subset *V* of *X* such that $x \in V \subseteq \hat{\Omega}cl(V) \subseteq U$. Therefore, $x \in A \cap V$ which implies that $A \cap V \neq \emptyset$. Thus, there exists a $\hat{\Omega}$ -open subset *V* of *X* such that $A \cap V \neq \emptyset$ and $\hat{\Omega}cl(V) \subseteq U$.

iii) \Rightarrow iv) Suppose that *A* is a non-empty set which is disjoint from a closed subset *F* of *X*. Then, $X \setminus F$ is a open set such that $A \cap X \setminus F \neq \emptyset$. By hypothesis, there exists a $\hat{\Omega}$ -open subset *V* of *X* such that $A \cap V \neq \emptyset$ and $\hat{\Omega}cl(V) \subseteq X \setminus F$. Then $F \subseteq X \setminus \hat{\Omega}cl(V)$, where $X \setminus \hat{\Omega}cl(V)$ is a $\hat{\Omega}$ -open subset of *X*. By letting $U = X \setminus \hat{\Omega}cl(V)$, it is shown that there exists two disjoint $\hat{\Omega}$ -open sets *U* and *V* in *X* such that $A \cap V \neq \emptyset$ and $F \subseteq U$.

iv) \Rightarrow i) Suppose that *F* is any closed subset of *X* and $x \notin F$. Then $A \cap F = \emptyset$, where $A = \{x\}$. By hypothesis, there exists two disjoint $\hat{\Omega}$ -open sets *U* and *V* such that $A \cap V \neq \emptyset$ and $F \subseteq U$. It is shown that there exists two disjoint $\hat{\Omega}$ -open sets *U* and *V* such that, $x \in V$ and $F \subseteq U$. Thus, *X* is $\hat{\Omega}$ -regular.

Theorem 3.6. A space X is $\hat{\Omega}$ -regular if and only if for each $x \in X$ and every closed set F such that $x \notin F$, there exists $V \in \hat{\Omega}O(X, x)$ such that $\hat{\Omega}cl(V) \cap F = \emptyset$.

Proof. Necessity-Suppose that $x \in X$ and F is any closed set in X such that $x \notin F$. Then $X \setminus F$ is an open set in X containing x. By hypothesis, there exists a $\hat{\Omega}$ -open set V containing x such that $\hat{\Omega}cl(V) \subseteq X \setminus F$. Thus, $\hat{\Omega}cl(V) \cap F = \emptyset$.

Sufficiency-Suppose that $x \in X$ is arbitrary and F is any closed set in X such that $x \notin F$. By hypothesis, there exists $V \in \hat{\Omega}O(X, x)$ such that $\hat{\Omega}cl(V) \cap F = \emptyset$. Then $F \subseteq X \setminus \hat{\Omega}cl(V)$. If $U = X \setminus \hat{\Omega}cl(V)$, then U is a $\hat{\Omega}$ -open set such that $F \subseteq U, x \in V$ and $U \cap V = \emptyset$. Thus, X is is $\hat{\Omega}$ -regular.

Theorem 3.7. A space X is $\hat{\Omega}$ -regular if and only if for every closed subset F and for each $x \notin F$, there exists $\hat{\Omega}$ -open subsets U and V of X such that $x \in U$ and $F \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$.

Proof. Necessity-Suppose that *F* is any closed set not containing the point *x* of *X*. By hypothesis, there exists there exists two disjoint $\hat{\Omega}$ -open sets U_x and *V* in *X* such that $F \subseteq V, x \in U$. Then, $U_x \cap cl(V) = \emptyset$. Since cl(V) is a closed subset of *X* not containing *x*, again by hypothesis, there exists two disjoint $\hat{\Omega}$ -open sets *G* and *W* in *X* such that $cl(V) \subseteq W$ and $x \in G$. Then, $cl(G) \cap W = \emptyset$. Put $U = U_x \cap G$, then *U* is a $\hat{\Omega}$ -open set disjoint from *V* and $x \in U, F \subseteq V$. Moreover, $cl(U) \cap cl(V) \subseteq cl(G) \cap W = \emptyset$. Sufficiency-Suppose that for every closed subset *F* not containing a point *x* of *X*, there exists $\hat{\Omega}$ -open subsets *U* and *V* of *X* such that $x \in U$ and $F \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$. Then $U \cap V \subseteq cl(U) \cap cl(V) = \emptyset$. Thus, *X* is a $\hat{\Omega}$ -regular space.

Theorem 3.8. Let Y be both open and pre-closed set in a $\hat{\Omega}$ -regular space (X, τ) . Then the subspace $(Y, \tau|_Y)$ is $\hat{\Omega}$ -regular.

Proof. Suppose that F_1 is closed in $(Y, \tau|_Y)$ and x be any point in X such that $x \in Y \setminus F_1$. Then $F_1 = F \cap Y$ for some closed set F in X. Since $x \in Y \setminus F_1, x \notin F$. By hypothesis, there exists disjoint $\hat{\Omega}$ -open sets U and V in X such that $F \subseteq U, x \in V$. By [2] theorem 6.10, $U \cap Y$ and $V \cap Y$ are disjoint $\hat{\Omega}$ -open sets in $(Y, \tau|_Y)$ such that $F_1 \subseteq U \cap Y, x \in V \cap Y$. Therefore, $(Y, \tau|_Y)$ is $\hat{\Omega}$ -regular.

Theorem 3.9. Let X be a $\hat{\Omega}$ -regular space. If A is $\hat{\Omega}$ -closed relative to X, then A is *gp*-closed subset of X.

Proof. Suppose that X is a $\hat{\Omega}$ -regular space and A is any $\hat{\Omega}$ -closed relative to X. Let U be any open subset of X such that $A \subseteq U$. Let $x \in A$ be arbitrary. Then U is an open subset of X such that $x \in U$. By theorem 3.5 (ii), there is a $\hat{\Omega}$ -open set V_x containing x such that $\hat{\Omega}cl(V_x) \subseteq U$. Then the family $\{V_x : x \in A, x \in V \text{ and } \hat{\Omega}cl(V_x) \subseteq U\}$ is

a $\hat{\Omega}$ -open cover of A. Since A is $\hat{\Omega}$ -closed relative to X, there exists a finite number of points x_1, x_2, \ldots, x_n in A such that $A \subseteq \bigcup_{i=1}^{i=n} \hat{\Omega}cl(V_{x_i}) \subseteq U$. By [2] remark 5.2, each set in X. Then, $A \subseteq \hat{\Omega}cl(A) \subseteq \bigcup_{i=1}^{i=n} \hat{\Omega}cl(V_{x_i}) \subseteq U$. Since $pcl(A) \subseteq \hat{\Omega}cl(A)$, it follows that A is *gp*-closed subset of X.

Theorem 3.10. If $f: (X, \tau) \to (Y, \sigma)$ is continuous bijective such that every $\hat{\Omega}$ -open set is $\hat{\Omega}$ -open, then the image of a $\hat{\Omega}$ -regular space is $\hat{\Omega}$ -regular.

Proof. Suppose that (X, τ) is a $\hat{\Omega}$ -regular space and $y \in Y$ be arbitrary and F is any closed set in Y such that $y \notin F$. Since f is surjective, y = f(x) for some $x \in X$. Since f is continuous, $f^{-1}(F)$ is a closed set in X such that $x \notin f^{-1}(F)$. Since X is $\hat{\Omega}$ -regular, there exists disjoint $\hat{\Omega}$ -open sets U and V in X such that $x \in U$ and $f^{-1}(F) \subseteq V$. By hypothesis, f(U) and f(V) are disjoint $\hat{\Omega}$ -open sets in Y such that $y \in f(U)$ and $F \subseteq f(V)$. Therefore, Y is $\hat{\Omega}$ -regular space.

Theorem 3.11. If $f:(X,\tau) \to (Y,\sigma)$ is closed injective $\hat{\Omega}$ -irresolute and Y is $\hat{\Omega}$ regular, then X is $\hat{\Omega}$ -regular space.

Proof. Suppose that (Y, σ) is a $\hat{\Omega}$ -regular space and $x \in X$ be arbitrary and F is any closed set in X such that $x \notin F$. Since f is closed, f(F) is a closed set in Y such that $f(x) \notin f(F)$. Since Y is $\hat{\Omega}$ -regular, there exists disjoint $\hat{\Omega}$ -open sets U and V in Y such that $f(x) \in U$ and $f(F) \subseteq V$. Since f is $\hat{\Omega}$ -irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint $\hat{\Omega}$ -open sets in X such that $x \in f^{-1}(U)$ and $F \subseteq f^{-1}(V)$. Therefore, Y is $\hat{\Omega}$ -regular space.

Definition 3.12. A space (X, τ) is said to be $\hat{\Omega}$ -normal if for every pair of disjoint closed sets A and B of X, there exists a pair of disjoint $\hat{\Omega}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Example 3.13. If $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$, then $\hat{\Omega}O(X) = \tau$. Here X is Ω -normal.

Theorem 3.14. Every $\hat{\Omega}$ -regular space is $\hat{\Omega}$ -normal.

Proof. Suppose that A and B are any pair of disjoint closed sets in X and $x \in A$. Then $x \notin B$. By hypothesis, there exists disjoint $\hat{\Omega}$ -open sets U_x and V_x such that $x \in U_x$ and $B \subseteq V_x$. If we take $U = \bigcup_{x \in A} U_x$, then by [2] theorem 4.16, U is $\hat{\Omega}$ -open set in X such that $A \subseteq U$. Also $U \cap V_x = \emptyset$. Thus, X is $\hat{\Omega}$ -normal.

Remark 3.15. It is noted from the example 3.10 that $\hat{\Omega}$ -normal space can not, in general,

be $\hat{\Omega}$ -regular space.

Let us prove the necessary condition under which $\hat{\Omega}$ -normal space become $\hat{\Omega}$ -regular.

Theorem 3.16. If a space X is $\hat{\Omega}$ -normal and R_0 , then X is $\hat{\Omega}$ -regular space.

Proof. Suppose that *F* is any closed set in *X* and $x \in X \setminus F$ is an arbitrary point. Then $X \setminus F$ is open in *X* containing *x*. Since *X* is $R_0, cl(\{x\}) \subseteq X \setminus F$ and hence $cl(\{x\}) \cap F = \emptyset$. Since *X* is $\hat{\Omega}$ -normal, there exists a pair of disjoint $\hat{\Omega}$ -open sets *U* and *V* in *X* such that $cl(\{x\}) \subseteq U$ and $F \subseteq V$. Therefore, $x \in U, F \subseteq V$ and $U \cap V = \emptyset$. Thus, *X* is $\hat{\Omega}$ -regular space.

Some characterizations of $\hat{\Omega}$ -normal spaces.

Theorem 3.17. A space X is $\hat{\Omega}$ -normal if and only if for every closed set A and every open set B containing A, there exists a $\hat{\Omega}$ -open set U in X such that $A \subseteq U \subseteq cl(U) \subseteq B$.

Proof. Necessity-Suppose that X is $\hat{\Omega}$ -normal. Suppose that A is any closed set and B is any open set in X such that $A \subseteq B$. Then A and $X \setminus B$ are a pair of disjoint $\hat{\Omega}$ -closed sets in X. By hypothesis, there exists a pair of $\hat{\Omega}$ -open sets U and V in X such that $A \subseteq U, X \setminus B \subseteq V$ Then $A \subseteq U \subseteq X \setminus V \subseteq B$. By [2] remark 5.2, $A \subseteq U \subseteq \hat{\Omega}cl(U) \subseteq X \setminus V \subseteq B$.

Sufficiency-Suppose that *A* and *B* are disjoint $\hat{\Omega}$ -closed sets in *X*. Then $A \subseteq X \setminus B$. By hypothesis, there exists a $\hat{\Omega}$ -open set *U* in *X* such that $A \subseteq U \subseteq cl(U) \subseteq X \setminus B$. If $V = X \setminus \hat{\Omega}cl(U)$, then *V* is a $\hat{\Omega}$ -open set in *X* such that $A \subseteq U, B \subseteq V$ and $U \cap V = \emptyset$. Thus, *X* is $\hat{\Omega}$ -normal.

Theorem 3.18. A space (X, τ) is $\hat{\Omega}$ -normal if and only if for every pair of disjoint closed sets *A* and *B* of *X*, there exists a $\hat{\Omega}$ -open set *U* in *X* containing *A* and $\hat{\Omega}cl(U) \cap B = \emptyset$.

Proof. Necessity-Suppose that X is a $\hat{\Omega}$ -normal space and suppose that A and B are any two disjoint closed sets in X. Then $A \subseteq X \setminus B$. By theorem 3.14, there exists a $\hat{\Omega}$ -open set U in X such that $A \subseteq U \subseteq \hat{\Omega}cl(U) \subseteq X \setminus B$. Then $\hat{\Omega}cl(U) \cap B = \emptyset$.

Sufficiency-Suppose that *A* and *B* are any two disjoint closed sets in *X*. By hypothesis, there exists a $\hat{\Omega}$ -open set *U* in *X* containing *A* and $\hat{\Omega}cl(U) \cap B = \emptyset$. If $V = X \setminus \hat{\Omega}cl(U)$, then *V* is a $\hat{\Omega}$ -open set in *X* containing *B* such that $U \cap V = \emptyset$. Thus, *X* is $\hat{\Omega}$ -normal.

Theorem 3.19. Let X be semi- $T_{\frac{1}{2}}$. Then a space X is $\hat{\Omega}$ -normal if and only if for every pair of disjoint closed sets A and B of X, there exists a pair of $\hat{\Omega}$ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$ and $\hat{\Omega}cl(U) \cap \hat{\Omega}cl(V) = \emptyset$.

Proof. Necessity-Suppose that A and B are any two disjoint closed sets in X. Then $A \subseteq X \setminus B$. By theorem 3.15, there exists a $\hat{\Omega}$ -open set U in X such that $A \subseteq U$ and $\hat{\Omega}cl(U) \cap B = \emptyset$. Since $\hat{\Omega}cl(U)$ is a $\hat{\Omega}$ -closed set and by [3] theorem 3.17, $\hat{\Omega}cl(U)$ is a closed set in X. Again by hypothesis, there exists a $\hat{\Omega}$ -open set V in X such that $B \subseteq V$

and $\hat{\Omega}cl(U) \cap \hat{\Omega}cl(V) = \emptyset$. **Sufficiency-**Suppose that *A* and *B* are any two disjoint closed sets in *X*. By hypothesis, there exists a pair of $\hat{\Omega}$ -open sets *U* and *V* such that $A \subseteq U$ and $B \subseteq V$ and $\hat{\Omega}cl(U) \cap \hat{\Omega}cl(V) = \emptyset$. Thus, $U \cap V = \emptyset$ and hence *X* is $\hat{\Omega}$ -normal.

Theorem 3.20. Let Y be both open and closed set in a $\hat{\Omega}$ -normal space (X, τ) . Then the subspace $(Y, \tau | Y)$ is $\hat{\Omega}$ -normal.

Proof. Suppose that A and B are disjoint closed subsets of $(Y, \tau | Y)$. Since Y is closed subset of X. A and B are closed a subset of X. Since X is $\hat{\Omega}$ -normal, there exists a disjoint pair of $\hat{\Omega}$ -open subsets U_1 and U_2 of X such that $A \subseteq U_1$ and $B \subseteq V_1$. Take $U = U_1 \cap Y$ and $V = V_1 \cap Y$. By [2] theorem 6.10, U and V are $\hat{\Omega}$ -open sets in the subspace $(Y, \tau | Y)$. Since U_1 and V_1 are disjoint, U and V are disjoint and $A = A \cap Y \subseteq U_1 \cap Y = U$, $B = B \cap Y \subseteq V_1 \cap Y = V$. Therefore, $(Y, \tau | Y)$ is $\hat{\Omega}$ -normal.

Theorem 3.21. If $f : (X, \tau) \to (Y, \sigma)$ is continuous bijective such that every $\hat{\Omega}$ -open set is $\hat{\Omega}$ -open, then image of a $\hat{\Omega}$ -normal space is $\hat{\Omega}$ -normal.

Proof. Suppose that (X, τ) is a $\hat{\Omega}$ -normal space and A and B are any two disjoint closed sets in Y. Since f is continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed sets in X. Since X is $\hat{\Omega}$ -normal, there exists disjoint $\hat{\Omega}$ -open sets U and V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By hypothesis, f(U) and f(V) are disjoint $\hat{\Omega}$ -open sets in Y such that $A \in f(U)$ and $B \subseteq f(V)$. Therefore, Y is $\hat{\Omega}$ -normal space.

Theorem 3.22. If $f : (X, \tau) \to (Y, \sigma)$ is closed injective $\hat{\Omega}$ -irresolute and Y is $\hat{\Omega}$ -normal, then X is $\hat{\Omega}$ -normal space.

Proof. Suppose that (Y, σ) is a $\hat{\Omega}$ -normal space and A and B are any two disjoint closed sets in X. Since f is closed, f(A) and f(B) are closed sets in Y. Since f is injective, f(A) and f(B) are disjoint closed sets in Y. Since Y is $\hat{\Omega}$ -normal, there exists disjoint $\hat{\Omega}$ -open sets U and V in Y such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is $\hat{\Omega}$ -irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint $\hat{\Omega}$ -open sets in X such that $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$. Therefore, Y is $\hat{\Omega}$ -normal space.

References

- [1] Ekici E, "On δ -semiopen sets and a generalizations of functions", *Bol. Soc. Paran. Mat.* (3s.), 23(1-2):73–84, 2005.
- [2] Lellis Thivagar M and Anbuchelvi M, "Note on $\hat{\Omega}$ sets in topological spaces" Mathematical Theory and Modeling, Vol. 2, No. 9, pp. 50–58, 2012.
- [3] Lellis Thivagar M and Anbuchelvi M, "New spaces and continuity via $\hat{\Omega}$ -closed sets," (Communicated).

- [4] Lellis Thivagar M and Anbuchelvi M, "A New type of Generalized Separation Axioms", *International Journal of Computer Applications*, Vol. 57, No. 8, Nov 2012.
- [5] Levin N, "Semi open stets and semi continuity in topological spaces", *Amer. Math. Monthly*, 70:36–41, 1963.
- [6] Levin N, "Generalized closed sets in Topology", *Rend. Circ. Mat. Palermo*, 19(2):89–96, 1970.
- [7] Munshi B.M., "Separation Axioms", Acta Ciencia, 12:140–144, 1986.
- [8] Shanin N.A., "On Separation in topological Spaces", C.R (Doklady) Acad. Sci. URSS (N.S), 38, 110–13, 1943.
- [9] Velico N.V., "H-closed topological spaces", Amer. Math. Soc. Trans, 78:103–18, 1968.