Ulam - Hyers, Ulam - Trassias, Ulam - Jrassias Stabilities of an Additive Functional Equation in Generalized 2-Normed Spaces: Direct and Fixed Point Approach

M. Arunkumar ${ }^{1}$ and N. Maheshkumar ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India. e-mail:annarun2002@yahoo.co.in
${ }^{2}$ Department of Mathematics, Arunai Engineering College, Tiruvannamalai - 606 603, TamilNadu, India. e-mail:mrnmahesh@yahoo.com

Abstract

In this paper, the authors established the Ulam - Hyers, Ulam - TRassias and Ulam - JRassias stabilities of the additive functional equation $g(x)+g(y+z)=g(x+y)+g(z)$ in Generalized 2- normed spaces using direct and Fixed point method.

1 INTRODUCTION

The stability problem of functional equations originated from a question of S.M. Ulam [21] concerning the stability of group homomorphisms. D.H. Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by T. Aoki [2] for additive mappings and by Th.M. Rassias [20] for linear mappings by considering an unbounded Cauchy difference.

The paper of Th.M. Rassias [20] has provided a lot of influence in the development of what we call Ulam - TRassias stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by P. Gavruta [8] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

In 1982, J.M. Rassias [16] followed the innovative approach of the Th.M. Rassias theorem [20] in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p}\|y\|^{q}$ for $p, q \in R$ with $p+q=1$.

In 2008, a special case of Gavruta's theorem for the unbounded Cauchy difference was obtained by Ravi etal., [19] by considering the summation of both the sum and the product of two p - norms in the sprit of Rassias approach. This stability is now called Ulam -JRassias stability of functional equations. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [1, 3, 7, $10,11,12]$).

The solution and stability of the following additive functional equations

$$
\begin{align*}
& g(x+y)=g(x)+g(y), \tag{1.1}\\
& g(2 x-y)+g(x-2 y)=3 g(x)-3 g(y), \tag{1.2}\\
& g(x+y-2 z)+g(2 x+2 y-z)=3 g(x)+3 g(y)-3 g(z), \tag{1.3}\\
& g(2 x \pm y \pm z)=g(x \pm y)+g(x \pm z), \tag{1.4}
\end{align*}
$$

were discussed in [1, 13, 18, 3]. Also M. Arunkumar et. al., [5] investigated the generalized Ulam-Hyers stability of a functional equation

$$
f(y)=\frac{f(y+z)+f(y-z)}{2}
$$

which is originating from arithmetic mean of consecutive terms of an arithmetic progression using direct and fixed point methods.

Recently, M.Arunkumar, P.Agilan [6] established the solution and stability of the following additive functional equation and inequality

$$
\begin{equation*}
f(x)+f(y+z)-f(x+y)=f(z) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f(x)+f(y+z)-f(x+y)\| \leq\|f(z)\| . \tag{1.6}
\end{equation*}
$$

in Banach space in the sense of Ulam, Hyers, Rassias.
In this paper, the authors established the solution and generalized Ulam-Hyers stability of the additive functional equation

$$
\begin{equation*}
g(x)+g(y+z)=g(x+y)+g(z) \tag{1.7}
\end{equation*}
$$

in Generalized 2- normed spaces.
In Section 2, we present some basic definitions and notations in generalized 2normed spaces. In Section 3, the generalized Ulam-Hyers stability of the functional equation (1.7) is investigated using direct method. The generalized Ulam-Hyers stability of the functional equation (1.7) using fixed point approach is established in Section 4.

2 PRELIMINARIES

In this section, the authors present some basic definitions and notations related to Generalized 2-normed spaces.

Definition 2.1 [4] Let X be linear space. A function $N(.,):. X \times X \rightarrow[0, \infty)$ is called a generalized 2-normed space if it satisfies the following
(G1) $N(x, y)=0$ if and only if x and y are linearly independent vectors.
(G2) $N(x, y)=N(y, x)$ for all $x, y \in X$,
(G3) $N(\lambda x, y)=|\lambda| N(x, y)$ for all $x, y \in X$ and $X=\varphi, \varphi$ is a real or complex field,
(G4) $N(x+y, z) \leq N(x, z)+N(y, z)$ for all $x, y, z \in X$.
The generalized 2-normed space is denoted by ($X, N(.,$.$)).$
Definition 2.2 [4] A sequence $\left\{x_{n}\right\}$ in a generalized 2-normed space ($X, N(.,$.$)) is$ called convergent if there exist $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, y\right)=0$ then $\lim _{n \rightarrow \infty} N\left(x_{n}, y\right)=N(x, y)$ for all $y \in X$.

Definition 2.3 [4] A sequence $\left\{x_{n}\right\}$ in a generalized 2-normed space ($X, N(.,$.$)) is$ called Cauchy sequence is there exist two lineary independent elements y and z in X such that $\left\{N\left(x_{n}, y\right)\right\}$ and $\left\{N\left(x_{n}, z\right)\right\}$ are real Cauchy sequences.

Definition 2.4 [4] A generalized 2-normed space ($X, N(.,$.$)) is called generalized 2-$ Banach space is every Cauchy sequence is convergent.

3 STABILITY RESULT IN GENERALIZED 2 - NORMED SPACE: DIRECT METHOD

In this section, the authors investigate the generalized Ulam - Hyers stability of the functional equation (1.7) in Generalized 2- normed space using direct method.

Now let us consider X be a generalized 2-normed space and Y be generalized 2Banach space, respectively.

Theorem 3.1 Let $j= \pm 1$. Let $g: X \rightarrow Y$ be a mapping for which there exist a function $\alpha, \delta: X^{3} \rightarrow[0, \infty)$ with the condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{2^{n j}} \alpha\left(\left(2^{n j} x, s\right),\left(2^{n j} y, s\right),\left(2^{n j} z, s\right)\right)=0 \tag{3.1}
\end{equation*}
$$

such that the functional inequality

$$
\begin{equation*}
N(g(x)+g(y+z)-g(x+y)-g(z), s) \leq \alpha((x, s),(y, s),(z, s)) \tag{3.2}
\end{equation*}
$$

for all $x, y, z \in X$ and all $s \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ satisfying the functional equation (3.7) and

$$
\begin{equation*}
N(g(x)-A(x), s) \leq \frac{1}{2} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\delta\left(2^{k j} x, s\right)}{2^{k j}} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta\left(2^{k j} x, s\right)=\alpha\left(\left(2^{k j} x, s\right),\left(2^{k j} x, s\right),(0, s)\right) \tag{3.4}
\end{equation*}
$$

for all $x \in X$ and all $s \in X$. The mapping $A(x)$ is defined by

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N\left(\frac{g\left(2^{n j} x\right)}{2^{n j}}, s\right)=N(A(x), s) \tag{3.5}
\end{equation*}
$$

for all $x \in X$ and all $s \in X$.
Proof. Assume $j=1$. Replacing (x, y, z) by $(x, x, 0)$ in (3.2), we get

$$
\begin{equation*}
N\left(g(x)-\frac{g(2 x)}{2}, s\right) \leq \frac{1}{2} \alpha((x, s),(x, s),(0, s)) \tag{3.6}
\end{equation*}
$$

for all $x \in X$ and all $s \in X$. It follows from (3.6) that

$$
\begin{equation*}
N\left(g(x)-\frac{g(2 x)}{2}, s\right) \leq \frac{\delta((x, s))}{2} \tag{3.7}
\end{equation*}
$$

where

$$
\delta((x, s))=\alpha((x, s),(x, s),(0, s))
$$

for all $x \in X$ and all $s \in X$. Now replacing x by $2 x$ and dividing by 2 in (3.7), we obtain

$$
\begin{equation*}
N\left(\frac{g(2 x)}{2}-\frac{g\left(2^{2} x\right)}{2^{2}}, s\right) \leq \frac{\delta(2 x, s)}{2^{2}} \tag{3.8}
\end{equation*}
$$

for all $x \in X$ and all $s \in X$. Using (G4), it from (3.7) and (3.8), we have

$$
\begin{align*}
N\left(g(x)-\frac{g\left(2^{2} x\right)}{2^{2}}, s\right) & \leq N\left(g(x)-\frac{g(2 x)}{2}, s\right)+N\left(\frac{g(2 x)}{2}-\frac{g\left(2^{2} x\right)}{2^{2}}, s\right) \\
& \leq \frac{1}{2}\left(\delta(x, s)+\frac{\delta(2 x, s)}{2}\right) \tag{3.9}
\end{align*}
$$

for all $x \in X$ and all $s \in X$. Proceeding further and using induction on a positive integer n, we get

$$
\begin{equation*}
N\left(g(x)-\frac{g\left(2^{n} x\right)}{2^{n}}, s\right) \leq \frac{1}{2} \sum_{k=0}^{n-1} \frac{\delta\left(2^{k} x, s\right)}{2^{k}} \tag{3.10}
\end{equation*}
$$

$$
\leq \frac{1}{2} \sum_{k=0}^{\infty} \frac{\delta\left(2^{k} x, s\right)}{2^{k}}
$$

for all $x \in X$ and all $s \in X$. In order to prove the convergence of the sequence

$$
\left\{\frac{g\left(2^{n} x\right)}{2^{n}}\right\}
$$

replace x by $2^{m} x$ and dividing by 2^{m} in (3.10), for any $m, n>0$, we deduce

$$
\begin{aligned}
N\left(\frac{g\left(2^{m} x\right)}{2^{m}}-\frac{g\left(2^{n+m} x\right)}{2^{(n+m)}}\right. & , s)=\frac{1}{2^{m}} N\left(g\left(2^{m} x\right)-\frac{g\left(2^{n} \cdot 2^{m} x\right)}{2^{n}}, s\right) \\
& \leq \frac{1}{2} \sum_{k=0}^{n-1} \frac{\delta\left(2^{k+m} x, s\right)}{2^{k+m}} \\
& \leq \frac{1}{2} \sum_{k=0}^{\infty} \frac{\delta\left(2^{k+m} x, s\right)}{2^{k+m}}
\end{aligned}
$$

$$
\rightarrow 0 \text { as } m \rightarrow \infty
$$

for all $x \in X$ and all $s \in X$. Also

$$
\begin{gathered}
N\left(\frac{g\left(2^{m} x\right)}{2^{m}}-\frac{g\left(2^{n+m} x\right)}{2^{(n+m)}}, s_{1}\right)=\frac{1}{2^{m}} N\left(g\left(2^{m} x\right)-\frac{g\left(2^{n} \cdot 2^{m} x\right)}{2^{n}}, s_{1}\right) \\
\leq \frac{1}{2} \sum_{k=0}^{n-1} \frac{\delta\left(2^{k+m} x, s_{1}\right)}{2^{k+m}} \\
\leq \frac{1}{2} \sum_{k=0}^{\infty} \frac{\delta\left(2^{k+m} x, s_{1}\right)}{2^{k+m}} \\
\rightarrow 0 \text { as } m \rightarrow \infty
\end{gathered}
$$

for all $x \in X$ and all $s_{1} \in X$.
Hence there exists two linearly independent elements s and s_{1} in X such that

$$
\left\{N\left(\frac{g\left(2^{n} x\right)}{2^{n}}, s\right)\right\} \text { and }\left\{N\left(\frac{g\left(2^{n} x\right)}{2^{n}}, s_{1}\right)\right\}
$$

are real Cauchy sequences. Hence the sequence $\left\{\frac{g\left(2^{n} x\right)}{2^{n}}\right\}$ is Cauchy sequence. Since Y is complete, there exists a mapping $A: X \rightarrow Y$ such that

$$
\lim _{n \rightarrow \infty} N\left(\frac{g\left(2^{n} x\right)}{2^{n}}, s\right)=N(A(x), s) \forall x \in X, s \in X
$$

Letting $n \rightarrow \infty$ in (3.10) we see that (3.3) holds for all $x \in X$. To prove that A satisfies (1.7), replacing (x, y, z) by ($2^{n} x, 2^{n} y, 2^{n} z$) and dividing by 2^{n} in (3.2), we
obtain

$$
\begin{aligned}
& \frac{1}{2^{n}} N\left(g\left(2^{n} x\right)+g\left(2^{n}(y+z)\right)-g\left(2^{n}(x+y)\right)-g\left(2^{n} z\right), s\right) \\
& \leq \frac{1}{2^{n}} \alpha\left(\left(2^{n} x, s\right),\left(2^{n} y, s\right),\left(2^{n} z, s\right)\right)
\end{aligned}
$$

for all $x, y, z \in X$ and all $s \in X$. Letting $n \rightarrow \infty$ in the above inequality using (3.7) and the definition of $A(x)$ and (M1), we see that

$$
A(x)+A(y+z)=A(x+y)+A(z) .
$$

Hence A satisfies (1.7) for all $x, y, z \in X$ and all $s \in X$. To prove that $A(x)$ is unique, let $B(x)$ be another additive mapping satisfying (1.7) and (3.3), then

$$
\begin{aligned}
& N(A(x)-B(x), s)=\frac{1}{2^{n}} N\left(A\left(2^{n} x\right)-B\left(2^{n} x\right), s\right) \\
& \leq \frac{1}{2^{n}}\left\{N\left(A\left(2^{n} x\right)-g\left(2^{n} x\right), s\right)+N\left(g\left(2^{n} x\right)-B\left(2^{n} x\right), s\right)\right\} \\
& \leq \sum_{k=0}^{\infty} \frac{\delta\left(2^{k+n} x, s\right)}{2^{(k+n)}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in X$ and all $s \in X$. Hence A is unique.
For $j=-1$, we can prove a similar stability result. This completes the proof of the theorem.

The following Corollary is an immediate consequence of Theorem 3.1 concerning the Ulam-Hyers [9], Ulam-TRassias [20] and Ulam-JRassias [19] stabilities of (1.7).

Corollary 3.2 Let $g: X \rightarrow Y$ be a function and there exits real numbers λ and t such that

$$
\begin{align*}
N(g(x) & +g(y+z)-g(x+y)-g(z), s) \\
& \leq \begin{cases}\lambda, & t<1 \text { or } t>1 ; \\
\lambda\left\{\|x, s\|^{t}+\|y, s\|^{t}+\|z, s\|^{t}\right\}, & \\
\lambda\left\{\|x, s\|^{t}\|y, s\|^{t}\|z, s\|^{t}+\left\{\|x, s\|^{3 t}+\|y, s\|^{3 t}+\|z, s\|^{s t}\right\}\right\}, & t<\frac{1}{3} \text { or } t>\frac{1}{3} ;\end{cases} \tag{3.11}
\end{align*}
$$

for all $x, y, z \in X$ and all $s \in X$. Then there exists a unique additive function $A: X \rightarrow Y$ such that

$$
N(g(x)-A(x), s) \leq\left\{\begin{array}{l}
\lambda, \tag{3.12}\\
\frac{2 \lambda\|x, s\|^{t}}{\left|2-2^{t}\right|}, \\
\frac{2 \lambda\|x, s\|^{3 t}}{\left|2-2^{3 t}\right|},
\end{array}\right.
$$

for all $x \in X$ and all $s \in X$.

4 STABILITY RESULT IN GENERALIZED 2 - NORMED SPACE: FIXED POINT METHOD

In this section, the authors has proved the generalized Ulam - Hyers stability of Additive functional equation (1.7) in Generalized 2-normed spaces with the help of fixed point method.

Now we will recall the fundamental results in fixed point theory.
Theorem 4.1 [14](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T: X \rightarrow X$ with Lipschitz constant L. Then, for each given element $x \in X$, either
(B_{1})

$$
d\left(T^{n} x, T^{n+1} x\right)=\infty \quad \forall n \geq 0,
$$

or
$\left(B_{2}\right)$ there exists a natural number n_{0} such that:
(i) $d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(ii) The sequence ($T^{n} x$) is convergent to a fixed point y^{*} of T
(iii) y^{*} is the unique fixed point of T in the set $Y=\left\{y \in X: d\left(T^{n} 0, y\right)<\infty\right\}$;
(iv) $d\left(y^{*}, y\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in Y$.

Hereafter through out this section, let us assume V be a vector space and B Banach space respectively.

Theorem 4.2 Let $g: V \rightarrow B$ be a mapping for which there exist a function $\alpha, \delta, \gamma: V^{3} \rightarrow[0, \infty)$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{\mu_{i}^{k}} \alpha\left(\left(\mu_{i}^{k} x, s\right),\left(\mu_{i}^{k} y, s\right),\left(\mu_{i}^{k} z, s\right)\right)=0 \tag{4.1}
\end{equation*}
$$

where

$$
\mu_{i}= \begin{cases}2, & i=0 \\ \frac{1}{2}, & i=1\end{cases}
$$

satisfying the functional inequality

$$
\begin{equation*}
N(g(x)+g(y+z)-g(x+y)-g(z), s) \leq \alpha((x, s),(y, s),(z, s)) \tag{4.2}
\end{equation*}
$$

for all $x, y, z \in V$ and all $s \in V$. If there exists $L=L(i)<1$ such that the function

$$
x \rightarrow \gamma(x, s)=\delta\left(\frac{x}{2}, s\right)
$$

has the property

$$
\begin{equation*}
\gamma(x, s)=L \mu_{i} \gamma\left(\frac{x}{\mu_{i}}, s\right) \tag{4.3}
\end{equation*}
$$

for all $x \in V$ and all $s \in V$. Then there exists unique additive function $A: V \rightarrow B$ satisfying the functional equation (1.7) and

$$
\begin{equation*}
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x, s) \tag{4.4}
\end{equation*}
$$

holds for all $x \in V$ and all $s \in V$.
Proof. Consider the set $X=\{p / p: V \rightarrow B, p(0)=0\}$ and introduce the generalized metric on X,
$d(p, q)=\inf \{K \in(0, \infty): N(p(x)-q(x), s) \leq K \gamma(x, s), x \in V\}$.
It is easy to see that (X, d) is complete.
Define $T: X \rightarrow X$ by

$$
\operatorname{Tp}(x)=\frac{1}{\mu_{i}} p\left(\mu_{i} x\right), \forall \quad x \in V .
$$

Now $p, q \in X$,
$d(p, q) \leq K \Rightarrow N(p(x)-q(x), s) \leq K \gamma(x, s), x \in V$.
$\Rightarrow N\left(\frac{1}{\mu_{i}} p\left(\mu_{i} x\right)-\frac{1}{\mu_{i}} q\left(\mu_{i} x\right), s\right) \leq \frac{1}{\mu_{i}} K \gamma\left(\mu_{i} x, s\right), x \in V$,
$\Rightarrow N\left(\frac{1}{\mu_{i}} p\left(\mu_{i} x\right)-\frac{1}{\mu_{i}} q\left(\mu_{i} x\right), s\right) \leq L K \gamma(x, s), x \in V$,
$\Rightarrow N(T p(x)-T q(x), s) \leq L K \gamma(x, s), x \in V$,
$\Rightarrow d(T p, T q) \leq L K$.

This implies

$$
d(T p, T q) \leq L d(p, q),
$$

for all $p, q \in X$. i.e., T is a strictly contractive mapping on X with Lipschitz constant L.

From (3.7), we have

$$
\begin{equation*}
N\left(g(x)-\frac{g(2 x)}{2}, s\right) \leq \frac{\delta((x, s))}{2} \tag{4.5}
\end{equation*}
$$

where

$$
\delta((x, s))=\alpha((x, s),(x, s),(0, s))
$$

for all $x \in V$ and all $s \in V$. Using (4.3) for the case $i=0$, it reduces to

$$
N\left(g(x)-\frac{1}{2} g(2 x), s\right) \leq \frac{1}{2} \gamma(x, s)
$$

for all $x \in V$ and all $s \in V$.

$$
\text { i.e., } \quad d(g, T g) \leq \frac{1}{2}=L=L^{1-0}=L^{1-i}<\infty .
$$

Again replacing $x=\frac{x}{2}$ in (4.5), we get

$$
N\left(2 g\left(\frac{x}{2}\right)-g(x), s\right) \leq \delta\left(\frac{x}{2}, s\right) .
$$

for all $x \in V$ and all $s \in V$. Using (4.3) for the case $i=1$, it reduces to $N\left(2 g\left(\frac{x}{2}\right)-g(x), s\right) \leq \gamma(x, s)$
for all $x \in V$ and all $s \in V$.

$$
\text { i.e., } \quad d(T g, g) \leq 1=L^{0}=L^{1-1}=L^{1-i}<\infty \text {. }
$$

In above cases, we arrive
$d(g, T g) \leq L^{1-i}$
Therefore ($B_{2}(i)$) holds.
By $\left(B_{2}(i i)\right)$, it follows that there exists a fixed point A of T in X such that
$N(A(x), s)=\lim _{k \rightarrow \infty} N\left(\frac{g\left(\mu_{i}^{k} x\right)}{\mu_{i}^{k}}, s\right) \quad \forall x \in V$, andall $s \in V$.
In order to prove $A: V \rightarrow B$ is Additive. Replacing (x, y, z) by $\left(\mu_{i}^{k} x, \mu_{i}^{k} y, \mu_{i}^{k} z\right)$ in
(4.2) and dividing by μ_{i}^{k}, it follows from (4.1) and (4.6), A satisfies (4.7) for all $x, y, z \in V$ and all $s \in V$. i.e., A satisfies the functional equation (4.7).

By $\left(B_{2}(i i i)\right), \quad A$ is the unique fixed point of T in the set $Y=\{g \in X: d(T g, A)<\infty\}$, using the fixed point alternative result A is the unique function such that

$$
N(g(x)-A(x), s) \leq K \gamma(x, s)
$$

for all $x \in V$ and all $s \in V$ and $K>0$. Finally by $\left(B_{2}(i v)\right)$, we obtain

$$
d(g, A) \leq \frac{1}{1-L} d(g, T g)
$$

this implies

$$
d(g, A) \leq \frac{L^{1-i}}{1-L}
$$

Hence we conclude that

$$
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x, s) .
$$

for all $x \in V$ and all $s \in V$. This completes the proof of the theorem.
From Theorem 4.2, we obtain the following corollary concerning the Ulam-Hyers [9], Ulam-TRassias [20] and Ulam-JRassias [19] stabilities of (1.7).

Corollary 4.3 Let $g: V \rightarrow B$ be a mapping and there exits real numbers λ and s such that

$$
\begin{align*}
& N(g(x)+g(y+z)-g(x+y)-g(z), s) \tag{4.7}\\
& \leq\left\{\begin{array}{lll}
(i) & \lambda, & t<1 \text { or } t>1 ; \\
\text { (ii) } & \left.\lambda\| \| x, s\left\|^{t}+\right\| y, s\left\|^{t}+\right\| z, s \|^{4}\right\}, & \\
\text { (iii) } & \lambda\left\{\|x, s\|^{t}\|y, s\|^{t}\|z, s\|^{t}+\left\{\|x, s\|^{3 t}+\|y, s\|^{\beta t}+\|z, s\|^{3 t}\right\}\right\}, & t<\frac{1}{3} \text { or } t>\frac{1}{3} ;
\end{array}\right.
\end{align*}
$$

for all $x, y, z \in V$ and all $s \in V$, then there exists a additive function $A: V \rightarrow B$ such that

$$
N(g(x)-A(x), s) \leq \begin{cases}(i) & \lambda, \tag{4.8}\\ (i i) & \frac{2 \lambda\|x, s\|^{t}}{\left|2-2^{t}\right|} \\ (i i i) & \frac{2 \lambda\|x, s\|^{3 t}}{\left|2-2^{3 t}\right|}\end{cases}
$$

for all $x \in V$ and all $s \in V$.

Proof. Setting

$$
\alpha(x, y, z)=\left\{\begin{array}{l}
\lambda, \\
\lambda\left\{\|x, s\|^{t}+\|y, s\|^{t}+\|z, s\|^{t}\right\}, \\
\lambda\left\{\|x, s\|^{t}\|y, s\|^{t}\|z, s\|^{t}+\left(\|x, s\|^{3 t}+\|y, s\|^{3 t}+\|z, s\|^{3 t}\right)\right\}
\end{array}\right.
$$

for all $x, y, z \in V$ and all $s \in V$. Now

$$
\begin{aligned}
& \frac{\alpha\left(\mu_{i}^{k} x, \mu_{i}^{k} y, \mu_{i}^{k} z\right)}{\mu_{i}^{k}}=\left\{\begin{array}{l}
\frac{\lambda}{\mu_{i}^{k}}, \\
\frac{\lambda}{\mu_{i}^{k}}\left\{\left\|\mu_{i}^{k} x, s\right\|^{t}+\left\|\mu_{i}^{k} y, s\right\|^{t}+\left\|\mu_{i}^{k} z, s\right\|^{t}\right\}, \\
\frac{\lambda}{\mu_{i}^{k}}\left\{\left\|\mu_{i}^{k} x, s\right\|^{t}\left\|\mu_{i}^{k} y, s\right\|^{t}\left\|\mu_{i}^{k} z, s\right\|^{t}\left\{\left\|\mu_{i}^{k} x, s\right\|^{3 t}+\left\|\mu_{i}^{k} y, s\right\|^{3 t}+\left\|\mu_{i}^{k} z, s\right\|^{3 t}\right\}\right\}
\end{array}\right. \\
& =\left\{\begin{array}{l}
\rightarrow 0 \text { as } k \rightarrow \infty, \\
\rightarrow 0 \text { as } k \rightarrow \infty, \\
\rightarrow 0 \text { as } k \rightarrow \infty .
\end{array}\right.
\end{aligned}
$$

i.e., (4.1) is holds. But we have

$$
\gamma(x, s)=\delta\left(\frac{x}{2}, s\right)=\alpha\left(\left(\frac{x}{2}, s\right),\left(\frac{x}{2}, s\right),(0, s)\right)=\left\{\begin{array}{l}
\frac{\lambda}{\frac{2 \lambda}{2^{t}}}\|x, s\|^{t}, \\
\frac{2 \lambda}{2^{3 t}}\|x, s\|^{3 t},
\end{array}\right.
$$

Also,

$$
\frac{1}{\mu_{i}} \gamma\left(\mu_{i} x, s\right)=\left\{\begin{array}{l}
\frac{\lambda}{\mu_{i}}, \\
\frac{2 \lambda}{\mu_{i} \cdot 2^{t}}\left\|\mu_{i} x, s\right\|^{t}, \\
\frac{2 \lambda}{\mu_{\cdot} \cdot 2^{3 t}}\left\|\mu_{i} x, s\right\|^{3 t} .
\end{array}=\left\{\begin{array}{l}
\mu_{i}^{-1} \lambda, \\
\mu_{i}^{t-1} \frac{2 \lambda}{2^{t}}\|x, s\|^{t}, \\
\mu_{i}^{3 t-1} \frac{2 \lambda}{2^{3 t}}\|x, s\|^{3 t} .
\end{array}=\left\{\begin{array}{l}
\mu_{i}^{-1} \gamma(x), \\
\mu_{i}^{t-1} \gamma(x), \\
\mu_{i}^{3 t-1} \gamma(x) .
\end{array}\right.\right.\right.
$$

Hence the inequality (4.3) holds either, $L=2^{-1}$ for $t=0$ if $i=0$ and $L=2$ for $t=0$ if $i=1$. Now from (4.4), we prove the following cases for condition (i).

Case: $1 L=2^{-1}$ for $t=0$ if $i=0$

$$
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x, s)=\frac{\left(2^{-1}\right)^{1-0}}{1-(2)^{-1}} \lambda=\lambda .
$$

Case:2 $L=2$ for $t=0$ if $i=1$

$$
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x)=\frac{(2)^{1-1}}{1-2} \lambda=-\lambda .
$$

Also, (4.3) holds either, $L=2^{t-1}$ for $t<1$ if $i=0$ and $L=\frac{1}{2^{t-1}}$ for $t>1$ if $i=1$. Now from (4.4), we prove the following cases for condition (ii).

Case: $1 L=2^{t-1}$ for $t<1$ if $i=0$

$$
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x, s)=\frac{\left(2^{t-1}\right)^{1-0}}{1-2^{t-1}} \frac{2 \lambda}{2^{t}}\|x, s\|^{t}=\frac{2^{t}}{2-2^{t}} \frac{2 \lambda}{2^{t}}\|x, s\|^{t}=\frac{2 \lambda\|x, s\|^{t}}{2-2^{t}} .
$$

Case:2 $L=\frac{1}{2^{t-1}}$ for $t>1$ if $i=1$

$$
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x, s)=\frac{\left(\frac{1}{2^{t-1}}\right)^{1-1}}{1-\frac{1}{2^{t-1}}} \frac{2 \lambda}{2^{t}}\|x, s\|^{t}=\frac{2^{t}}{2^{t}-2} \frac{2 \lambda}{2^{t}}\|x, s\|^{t}=\frac{2 \lambda\|x, s\|^{t}}{2^{t}-2} .
$$

Finally, (4.3) holds either, $L=2^{3 t-1}$ for $3 t<1$ if $i=0$ and $L=\frac{1}{2^{3 t-1}}$ for $3 t>1$ if $i=1$. Now from (4.4), we prove the following cases for condition (iii).

Case: $1 L=2^{3 t-1}$ for $3 t<1$ if $i=0$

$$
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x, s)=\frac{\left(2^{3 t-1}\right)^{1-0}}{1-2^{3 t-1}} \frac{2 \lambda}{2^{3 t}}\|x, s\|^{3 t}=\frac{2^{3 t}}{2-2^{3 t}} \frac{2 \lambda}{2^{3 t}}\|x, s\|^{3 t}=\frac{2 \lambda\|x, s\|^{3 t}}{2-2^{3 t}} .
$$

Case: $2 L=\frac{1}{2^{3 t-1}}$ for $3 t>1$ if $i=1$

$$
N(g(x)-A(x), s) \leq \frac{L^{1-i}}{1-L} \gamma(x, s)=\frac{\left(\frac{1}{2^{3 t-1}}\right)^{1-1}}{1-\frac{1}{2^{3 t-1}}} \frac{2 \lambda}{2^{3 t}}\|x, s\|^{3 t}=\frac{2^{3 t}}{2^{3 t}-2} \frac{2 \lambda}{2^{3 t}}\|x, s\|^{3 t}=\frac{2 \lambda\|x\|^{3 t}}{2^{3 t}-2} .
$$

Hence the proof of the corollary is complete.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] M. Arunkumar, Solution and Stability of Arun-Additive functional equations, International Journal Mathematical Sciences and Engineering Applications, Vol 4, No. 3, (2010), 33-46.
[4] M. Arunkumar, G. Ganapathy, S. Murthy, Stability of a functional equation having nth order solution in Generalized 2-Normed Spaces, International Journal Mathematical Sciences and Engineering Applications, Vol. 5 No. IV (2011), 361-369.
[5] M. Arunkumar, S. Hema latha, C. Devi Shaymala Mary, Functional equation originating from arithmetic Mean of consecutive terms of an arithmetic Progression are stable in banach space: Direct and fixed point method, JP Journal of Mathematical Sciences, 3(1), (2012), 27-43.
[6] M. Arunkumar, P. Agilan, Additive functional equation and inequality are Stable in Banach space and its applications, Malaya Journal of Matematik (MJM), 1(1), (2013), 10-17.
[7] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[8] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc.Nat.Acad.Sci.,U.S.A., 27 (1941) 222-224.
[10] D.H. Hyers, G. Isac,Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.
[11] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[12] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
[13] D.O. Lee, Hyers-Ulam stability of an addtiive type functional equation, J. Appl. Math. and Computing, 13 (2003) no.1-2, 471-477.
[14] B.Margoils and J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 12674 (1968), 305-309.
[15] V.Radu, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory Cluj-Napoca, Vol. IV, 2003, in press.
[16] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
[17] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108, (1984) 445-446.
[18] K. Ravi, M. Arunkumar, On a n-dimensional additive Functional Equation with fixed point Alternative, Proceedings of International Conference on Mathematical Sciences 2007.
[19] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
[20] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
[21] S.M. Ulam, Problems in Modern Mathematics, Science Editions,Wiley, NewYork, 1964 (Chapter VI, Some Questions in Analysis: 1, Stability).

