On Arithmetic Functions

Bhabesh Das
Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India
E-mail: mtbdas99@gmail.com

Abstract

In this paper, we intend to establish some inequalities on Jordan totient function. Using arithmetic functions like the Dedekind's function ψ, the divisors function σ, Euler's totient function φ and their compositions we gave some results on perfect numbers and generalized perfect numbers.

Mathematics Subject Classification: 11A25, 11A41, 11Y70
Keywords: perfect number, 2-hyperperfect number, super-perfect number, super-hyperperfect number.

1. Introduction

Let $\sigma(n)$ denote the sum of divisors of n i.e. $\sigma(n)=\sum_{d \mid n} d$, where $\sigma(1)=1$. It is wellknown that n is said to be a perfect number if $\sigma(n)=2 n$. Euclid and Euler showed that even perfect numbers are of the form $n=2^{p-1}\left(2^{p}-1\right)$, where p and $2^{p}-1$ are primes. The prime of the form $2^{p}-1$ is called Mersenne prime and at this moment there are exactly 48 such primes, which mean that there are 48 even perfect numbers [11]. On the other hand, no odd perfect number is known, but no one has yet been able to prove conclusively that none exist. In [5] the author provided detailed information on perfect numbers. Positive integer n with the property $\sigma(n)=2 n-1$ is called almost perfect number, while that of $\sigma(n)=2 n+1$, quasi-perfect number. For many result and conjectures on this topic, see [4]. D.Suryanarayana [10] introduced the notation of super-perfect numbers. A positive integer n is said to be super- perfect number if $\sigma(\sigma(n))=2 n$ and even super-perfect numbers are of the form 2^{p-1} such that $2^{p}-1$ are Mersenne primes. It is asked in this paper and still unsolved whether there are odd super-perfect numbers. Miloni and Bear [8] introduced the concept of
k-hyperperfect number and they conjecture that there are k-hyperperfect numbers for every $k \in \square$. A. Beg and K. Fogarasi gave a table of k-hyperperfect numbers in [1] and defined positive integer n as k-hyperperfect number if $\sigma(n)=\frac{k+1}{k} n+\frac{k-1}{k}$.They proved that if $n=3^{k-1}\left(3^{k}-2\right)$, where $3^{k}-2$ is prime, then n is a $2-$ hyperperfect number. Perfect numbers are 1 -hyper- perfect numbers. If $\sigma(\sigma(n))=$ $\frac{3}{2} n+\frac{1}{2}$, then n is called super-hyperperfect number. In [1] authors conjectured that all super-hyperperfect numbers are of the form $n=3^{p-1}$, where p and $\frac{3^{p}-1}{2}$ are primes. The Jordan's totient function and Dedekind's function are respectively defined as $J_{k}(n)=n^{k} \prod\left(1-\frac{1}{p^{k}}\right)$ and $\psi(n)=n \prod\left(1+\frac{1}{p}\right)$, where p runs through the distinct prime divisors of n. Let by convention $J_{k}(1)=1, \psi(1)=1$. Euler's totient function is defined as $\varphi(n)=n \prod\left(1-\frac{1}{p}\right)$ i.e. $J_{1}(n)=\varphi(n)$. All these functions are multiplicative, i.e. satisfy the functional equation $f(m n)=f(m) f(n)$ for g.c.d $(m, n)=1$. In [9] the author defines $\psi \circ \psi$-perfect, $\psi \circ \sigma$-perfect, $\psi \circ \varphi$-perfect numbers, where " \circ " denotes composition.

Basic symbols and notations:

$\sigma(n)=$ Sum of divisors of n,
$\psi(n)=$ Dedekind's arithmetic function,
$J_{k}(n)=$ Jordan totient function,
$\varphi(n)=$ Euler's totient function,
$a / b=\mathrm{a}$ divides b ,
$a \mathrm{Cb}=\mathrm{a}$ does not divide b ,
$\operatorname{pr}\{n\}=$ set of distinct prime divisors of n.

Main Results

Proposition2.1. $J_{k}(a b) \leq a^{k} J_{k}(b)$, for any $a, b \geq 2, k \in \square$, with equality only if, $\operatorname{pr}\{a\} \subset \operatorname{pr}\{b\}$, where $\operatorname{pr}\{a\}$ denotes the set of distinct prime factors of a Proof: Let $a b=\prod_{p \mid a, p \mathrm{p}} p^{\alpha} \cdot \prod_{q|a, q| b} q^{\beta} \cdot \prod_{r \mathbf{G}, r \mid b} r^{\gamma}, \quad$ then $J_{k}(a b)=a^{k} b^{k} \prod\left(1-\frac{1}{p^{k}}\right) \prod\left(1-\frac{1}{q^{k}}\right) \prod\left(1-\frac{1}{r^{k}}\right)$ Since $\prod\left(1-\frac{1}{p^{k}}\right)<1, \quad$ so $\quad J_{k}(a b) \leq a^{k} b^{k} \prod\left(1-\frac{1}{q^{k}}\right) \prod\left(1-\frac{1}{r^{k}}\right)=a^{k} J_{k}(b) \quad$ Thus, $J_{k}(a b) \leq a^{k} J_{k}(b)$, for any $a, b \geq 2$. If $\operatorname{pr}\{a\} \subset \operatorname{pr}\{b\}$, then $a b=\prod_{p a, a, p b} p^{\alpha} \cdot \prod_{q\left(\mathbb{G},\left.q\right|_{b}\right.} q^{\beta}$ and hence $J_{k}(a b)=a^{k} J_{k}(b)$.

Proposition2.2. If $\operatorname{pr}\{a\} \not \subset \operatorname{pr}\{b\}$, then $J_{k}(a b) \leq\left(a^{k}-1\right) J_{k}(b)$ for any $a, b \geq 2, k \in \square$.
Proof: Let $a=\prod p^{\alpha} \prod q^{\beta}$ and $b=\prod p^{\gamma} \prod r^{\lambda}$, where p are the common prime factors, and $q \in \operatorname{pr}\{a\}$ are such that $q \notin \operatorname{pr}\{b\}$, so $\beta \geq 1$ and $\alpha, \gamma, \lambda \geq 0$ and $\operatorname{pr}\{a\} \not \subset \operatorname{pr}\{b\} . J_{k}(a b)=a^{k} b^{k} \prod\left(1-\frac{1}{p^{k}}\right) \prod\left(1-\frac{1}{q^{k}}\right) \prod\left(1-\frac{1}{r^{k}}\right)=a^{k} \prod\left(1-\frac{1}{q^{k}}\right) J_{k}(b)$ But, $\quad 1-\frac{1}{a^{k}}=1-\frac{1}{\left(\prod p^{\alpha} \prod q^{\beta}\right)^{k}} \geq 1-\frac{1}{\prod q^{k \beta}} \geq 1-\frac{1}{\prod q^{k}} \geq \prod\left(1-\frac{1}{q^{k}}\right)$
so, $J_{k}(a b)=a^{k} \prod\left(1-\frac{1}{q^{k}}\right) J_{k}(b) \leq a^{k}\left(1-\frac{1}{a^{k}}\right) J_{k}(b)=\left(a^{k}-1\right) J_{k}(b) \quad$ This \quad implies, $J_{k}(a b) \leq\left(a^{k}-1\right) J_{k}(b)$, for any $a, b \geq 2$.

Proposition2.3. Let $n \geq 3$, and suppose that n is ψ-deficient number, then $J_{k}(\psi(n))<\left(2^{k}-1\right) n^{k}$.

Proof: If n is a ψ-deficient number, then $\psi(n)<2 n$. Again for any $n \geq 3, \psi(n)$ is an even number. Using Proposition 2.1, we get $J_{k}(2 a) \leq a^{k} J_{k}(2)=a^{k} 2^{k}\left(1-\frac{1}{2^{k}}\right)=a^{k}\left(2^{k}-1\right) \quad$ Let $u=2 a$, an even number, then $J_{k}(u) \leq \frac{u^{k}}{2^{k}}\left(2^{k}-1\right)$.Therefore, $J_{k}(\psi(n)) \leq \frac{\{\psi(n)\}^{k}}{2^{k}}\left(2^{k}-1\right)<\frac{(2 n)^{k}}{2^{k}}\left(2^{k}-1\right)=\left(2^{k}-1\right) n^{k}$

Proposition 2.4. For any $n \geq 3, J_{k}(\varphi(n))<n^{k}$
Proof: First remark that for any $n \geq 3, \varphi(n)$ is even number and $\varphi(n)<n$. Let $\varphi(n)=2 u$, an even integer. Proceeding as Proposition 2.3, we obtain $J_{k}(2 u) \leq u^{k}\left(2^{k}-1\right)$, i.e. $J_{k}(\varphi(n)) \leq \frac{\left(2^{k}-1\right)}{2^{k}}\{\varphi(n)\}^{k}<\frac{\left(2^{k}-1\right)}{2^{k}} n^{k}<n^{k}$.

Proposition2.5. If n is an even perfect number, then $J_{k}(\sigma(n))<\left(2^{k}-1\right) n^{k}$.

Proof: If n is an even perfect number, then $n=2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is a Mersenne prime and $\sigma(n)=2 n$, so $J_{k}(\sigma(n))=j_{k}(2 n) \leq n^{k} j_{k}(2)=\left(2^{k}-1\right) n^{k}$.

Proposition2.6. If n be the product of distinct even perfect numbers $n_{1}, n_{2}, \ldots . . n_{r}$, then
a. (a) $\psi(n)=\left(\frac{2}{3}\right)^{r-1} \psi\left(n_{1}\right) \psi\left(n_{2}\right) \ldots . . \psi\left(n_{r}\right)$
b. $\varphi(n \sigma(n))<2^{r} n^{2}$.
c. $\varphi(\psi(n))=2^{r-1} \varphi\left(\psi\left(n_{1}\right)\right) \varphi\left(\psi\left(n_{2}\right)\right) \ldots . . . \varphi\left(\psi\left(n_{r}\right)\right)$

Proof: Let $n=n_{1} n_{2} \ldots n_{r}$, where $n_{i}=2^{p_{i}-1}\left(2^{p_{i}}-1\right)$ are distinct perfect numbers with Mersenne primes $2^{p_{i}}-1\left(p_{i}\right.$ primes, $\left.i=1,2, \ldots \ldots, r\right)$
a. $\psi\left(n_{i}\right)=3.2^{2 p_{i}-2} \quad$ for \quad each $\quad i, \quad$ so $\quad \psi(n)=3.2^{\left(2 p_{1}-1\right)+\left(2 p_{2}-1\right)+\ldots . .\left(2 p_{r}-2\right)}$ $=\left(\frac{2}{3}\right)^{r-1} \psi\left(n_{1}\right) \psi\left(n_{2}\right) \ldots . . \psi\left(n_{r}\right)$.
b. $\varphi\left(n_{i}\right)=2^{p_{i}-1}\left(2^{p_{i}-1}-1\right)$ for each i, and clearly $\varphi(n)=2^{r-1} \varphi\left(n_{1}\right) \cdot \varphi\left(n_{2}\right) \ldots \ldots . \varphi\left(n_{r}\right)$, so $\varphi(n)<2^{r-1} n$. Therefore $\varphi(n \sigma(n)) \leq \varphi(n) \sigma(n)<2^{r} n^{2}$.
$\varphi\left(\psi\left(n_{i}\right)\right)=2^{2\left(p_{i}-1\right)}$, for each $i, \operatorname{so} \varphi(\psi(n))=\varphi\left(3.2^{\left(2 p_{1}-1\right)+\left(2 p_{2}-1\right)+\ldots\left(2 p_{r}-2\right)}\right)$
$=2^{\left(2 p_{1}-1\right)+\left(2 p_{2}-1\right)+\ldots . .\left(2 p_{r}-2\right)}$
$=2^{r-1} \varphi\left(\psi\left(n_{1}\right)\right) \varphi\left(\psi\left(n_{2}\right)\right) \ldots . . \varphi\left(\psi\left(n_{r}\right)\right)$
Proposition 2.7. If n be the product of distinct 2-hyperperfect numbers $n_{1}, n_{2}, \ldots . . n_{r}$, then
a. $\quad \varphi(n)=\left(\frac{3}{2}\right)^{r-1} \varphi\left(n_{1}\right) \varphi\left(n_{2}\right) \ldots . . \varphi\left(n_{r}\right)$
b. $\quad \psi(n)=\left(\frac{3}{4}\right)^{r-1} \psi\left(n_{1}\right) \psi\left(n_{2}\right) \ldots . . \psi\left(n_{r}\right)$

Proof: Let $n=n_{1} n_{2} \ldots n_{r}$, where $n_{i}=3^{k_{i}-1}\left(3^{k_{i}}-2\right)$ distinct 2-hyperperfect numbers with primes are $3^{k_{i}}-2(i=1,2,3, \ldots \ldots r)$.
a. $\quad \varphi\left(n_{i}\right)=2.3^{k_{i}-1}\left(3^{k_{i}-1}-1\right)$, for each i.

Then

$$
\varphi(n)=\frac{2}{3} \cdot 3^{\left(k_{1}-1\right)+\left(k_{2}-1\right)+\ldots . .\left(k_{r}-1\right)}\left(3^{k_{1}-1}-1\right)\left(3^{k_{2}-1}-1\right) \ldots \ldots .\left(3^{k_{r}-1}-1\right)
$$

$$
=\left(\frac{3}{2}\right)^{r-1} \varphi\left(n_{1}\right) \varphi\left(n_{2}\right) \ldots \ldots . \varphi\left(n_{r}\right)(b) \quad \psi\left(n_{i}\right)=2^{2} 3^{k_{i}-2}\left(3^{k_{i}}-1\right), \quad \text { for } \quad \text { each } \quad i
$$ $\psi(n)=\frac{4}{3} .3^{\left(k_{1}-1\right)+\left(k_{2}-1\right)+\ldots+\left(k_{r}-1\right)}\left(3^{k_{1}}-1\right)\left(3^{k_{2}}-1\right) \ldots \ldots . .\left(3^{k_{r}}-1\right)=\left(\frac{3}{4}\right)^{r-1} \psi\left(n_{1}\right) \psi\left(n_{2}\right) \ldots . . \psi\left(n_{r}\right)$.

Proposition2.8. If n is a super-hyperperfect number, then $\varphi(\psi(n))=\frac{\psi(\varphi(n))}{3}$.
Proof: From definition of super-hyperperfect number we know that $n=3^{p-1}$, where p and $\frac{3^{p}-1}{2}$ are primes. $\psi(n)=4.3^{p-2}$, so $\varphi(\psi(n))=4.3^{p-3}=\frac{4 n}{9}$ and $\varphi(n)=2.3^{p-2}$, so
$\psi(\varphi(n))=4.3^{p-2}=\frac{4 n}{3}$. Therefore $\varphi(\psi(n))=\frac{\psi(\varphi(n))}{3}$.
Proposition2.9. If n be the product of distinct super-hyperperfect numbers $n_{1}, n_{2}, \ldots . . n_{r}$, then
a. $\varphi(\varphi(n))=\frac{3^{r-2}}{2^{r-1}} \cdot \varphi\left(n_{1}\right) \varphi\left(n_{2}\right) \ldots \ldots . . \varphi\left(n_{r}\right)$
b. $\psi(\psi(n))=\frac{3^{r-1}}{2^{2 r-3}} \cdot \psi\left(n_{1}\right) \psi\left(n_{2}\right) \ldots . . \psi\left(n_{r}\right)$

Proof: Let $n=n_{1} n_{2} \ldots n_{r}$, where $n_{i}=3^{p_{i}-1}$ are distinct super-hyperperfect numbers with p_{i} and $\frac{3^{p_{i}}-1}{2}$ are primes $\left(i=1,2,3, \ldots . r\right.$.). Again $\varphi\left(n_{i}\right)=2.3^{p_{i}-2} \operatorname{and} \psi\left(n_{i}\right)=4.3^{p_{i}-2}$.
a. $\varphi(n)=\varphi\left(3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots . .+\left(p_{r}-1\right)}\right)=\frac{2}{3} \cdot 3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots .+\left(p_{r}-1\right)}=2.3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots \ldots+\left(p_{r}-2\right)}, \quad$ so, $\varphi(\varphi(n))=\frac{2}{9} \cdot 3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots . .\left(p_{r}-1\right)}=\frac{3^{r-2}}{2^{r-1}} \cdot \varphi\left(n_{1}\right) \varphi\left(n_{2}\right) \ldots \ldots \varphi\left(n_{r}\right)$.
b. $\quad \psi(n)=\psi\left(3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots . .\left(p_{r}-1\right)}\right)=\frac{4}{3} \cdot 3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots . .\left(p_{r}-1\right)}=4.3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots \ldots+\left(p_{r}-2\right)}$, so $\psi\left(\psi(n)=\frac{8}{3} \cdot 3^{\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots\left(p_{r}-1\right)}=\frac{3^{r-1}}{2^{2 r-3}} \cdot \psi\left(n_{1}\right) \psi\left(n_{2}\right) \ldots . . \psi\left(n_{r}\right)\right.$.

Proposition2.10. (a) There are infinitely many n such that $\psi\left(J_{2}(n)\right)=J_{2}(\psi(n))$. (b) There are infinitely many n such that $\psi\left(J_{2}(n)\right)=\frac{J_{2}(\psi(n))}{2}$. (c) There are infinitely many n such that $\psi\left(J_{2}(n)\right)<J_{2}(\psi(n))<2 n^{2}$. (d) There are infinitely many n such that $J_{2}(\psi(n))<n^{2}<\psi\left(J_{2}(n)\right)$.

Proof: (a) is valid for $n=2^{a}$ for any $a>1$, since $J_{2}\left(2^{a}\right)=3.2^{2 a-2}$, $\psi\left(J_{2}\left(2^{a}\right)\right)=3.2^{2 a-1}=\frac{3}{2} n^{2}$ and $\psi\left(2^{a}\right)=3.2^{a-1}, J_{2}\left(\psi\left(2^{a}\right)\right)=3.2^{2 a-1}=\frac{3 n^{2}}{2}$. This implies $\psi\left(J_{2}(n)\right)=J_{2}(\psi(n))$. For (b) put $n=2^{a} 3^{b},(a \geq 1, b \geq 1)$. Then $J_{2}\left(2^{a} 3^{b}\right)=2^{2 a+1} 3^{2 b-1}$, $\psi\left(J_{2}\left(2^{a} 3^{b}\right)\right)=\psi\left(2^{2 a+1} 3^{2 b-1}\right)=2^{2 a+2} 3^{2 b-1}=\frac{4}{3} n^{2} . \quad$ Again $\quad \psi\left(2^{a} 3^{b}\right)=2^{a+1} 3^{b}$, $J_{2}\left(\psi\left(2^{a} 3^{b}\right)\right)=2^{2 a+3} 3^{2 b-1}=\frac{8}{3} n^{2}$, so $\psi\left(J_{2}(n)\right)=\frac{J_{2}(\psi(n))}{2}$. To prove (c) put $n=2^{a} 7^{b}$, $(a, b \geq 1) \quad J_{2}\left(2^{a} 7^{b}\right)=3^{2} .2^{2 a+2} 7^{2 b-2}, \quad \psi\left(J_{2}\left(2^{a} 7^{b}\right)\right)=\frac{576}{343} n^{2}, \quad$ and $\psi\left(2^{a} 7^{b}\right)=3.2^{a+2} 7^{b-1}$,
$J_{2}\left(\psi\left(2^{a} 7^{b}\right)\right)=\frac{4608}{2401} n^{2}$, So $\psi\left(J_{2}(n)\right)<J_{2}(\psi(n))<2 n^{2}$.
To prove (d), put $\quad n=5^{a},(a \geq 1) \quad J_{2}\left(5^{a}\right)=24.5^{2 a-2}, \psi\left(J_{2}\left(5^{a}\right)\right)=\frac{288}{125} n^{2}$,
$\psi\left(5^{a}\right)=6.5^{a-1}, J_{2}\left(\psi\left(5^{a}\right)\right)=\frac{576}{625} n^{2}$,
So, $J_{2}(\psi(n))<n^{2}<\psi\left(J_{2}(n)\right)$.
Proposition2.11. (a) There are infinitely many n such that $\varphi\left(J_{2}(n)\right)=J_{2}(\varphi(n))$
(b) There are infinitely many n such that $J_{2}(\phi(n))=\frac{\varphi\left(J_{2}(n)\right)}{3}$.

Proof: (a) is valid for $n=3^{a}$ for any $a>1$.
(b) is valid for $n=2^{a} 3^{b}$ for any $a \geq 1, b>1$. Then an easy computation shows that $J_{2}(\phi(n))=\frac{2}{27} n^{2}$ and $\varphi\left(J_{2}(n)\right)=\frac{2}{9} n^{2}$, so $J_{2}(\phi(n))=\frac{\varphi\left(J_{2}(n)\right)}{3}$.

References:

[1] A. Bege, K. Fogarasi, Generalized perfect numbers, Acta Univ. Sapientiae, Mathematica, 1, 1, (2009) 73-82.
[2] L.E.Dickson, History of the Theory of Numbers, Vol.1, Stechert New York 1934.
[3] R.Gur, N. Bircan, On Perfect Numbers and their Relations, ijcm, vol.5, 2010.no.27, 1337-1346.
[4] R.K. Guy: Unsolved problems in number theory, Third ed., Springer Verlag, 2004.
[5] O. Knill, The oldest open problem in mathematics, NEU Math Circle, December 2, 2007.
[6] J. Luquette, Perfect numbers, math.bu.edu/people/kost/teaching/Ma341/Joe.pdf.
[7] J. S. McCranie, A study of hyperperfect numbers, Journal of Integer Sequences, Vol.3.(2000). Article 00.1.3.
[8] D. Minoli, R. Bear, Hyperperfect numbers, Pi, Mu Epsilon J., 6 (1975), 153157
[9] J. Sandor: On the composition of some arithmetic functions, Studia Babes Bolyai University, Math., 34 (1989), 7-14
[10] D.Suryanarayana, Super perfect numbers, Elem.Matg. 24 (1969), 16-17.
[11] Great Internet Mersenne Prime Search (GIMPS)

