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In this paper a generalized ‘useful’ parametric mean length  UPLR ,
 

has been defined and bounds for  UPLR ,
 are obtained in terms of 

generalized useful R-norm information measure. 
 
Keywords and phrases: Parametric mean length, Entropy, Holder’s 
inequality.  
2000, Mathematics subject classification. 94A24, 94A15, 9417, 
26D15.  

 
 
1. Introduction 
Consider the model A given below for a finite scheme random experiment having 
 nAAA ,...,, 21  as the complete system of events with respective probabilities
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 (1.1) 

 
We call the scheme (1.1) as a finite information scheme. Every finite scheme 

describes a state of uncertainty. Shannon [6] introduced a quantity which in a 
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reasonable way, measures the amount of uncertianity (entropy). This measure is given 
by 

  



n

i
ii ppPH

1
log

 
(1.2) 

 
Can serve as a very suitable measure of entropy of the finite scheme . Through out 

the paper, logarithms are taken to base  2DD . 
Also, Guiasu and Picard [3] introduced a quantity in terms of utilities which also 

measure the amount of uncertianity associated with a given finite scheme. This 
measure is given by 
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Let  nxxxX ,...,, 21  be the finite set of input symbols which are to be encoded 

using alphabet of D symbols. It has been shown Feinstein [2] that there is a unique 
decipherable code with lengths nlll ,...,, 21  and satisfying 
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(1.4) 

 
where D is the size of the code alphabet. 
Noiseless coding theorem for Shannon’s entropy with ordinary code mean length 
 





n

i
ii plL

1  
(1.5) 

 
under the condition (1.4),has played an important role in ordinary communication 

theory, (Shannon [6]). 
 
Khan and Haseen [4], Khan, Autar and Haseen [5], Boekee et al [1] and Singh, 

Kumar and Tuteja [8] have studied generalized coding theorems by considering 
different generalized measures of (1.2) and (1.5) under the condition (1.4) of unique 
decipherability. 

 
In this paper, we study coding theorems by considering a new function depending 

on the parameters R and  . Our motivation for studying this new function is that it 
generalizes some entropy functions already existing in the literature. 
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2. Coding theorems 
Consider a function 
 

 



















































 R

n

i
ii

n

i

R
ii

R

pu

pu

R
RUPH

1

1

1

1

1
1

,






  

(2.1) 

for all   
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(i) When 1 , (2.1) reduces to the useful R-norm information due 
Singh, Kumar and Tuteja [8]. 

(ii)When niui ,...,2,11,1  , (2.1) reduces to the R-norm 
information measure due to Boekee et al [1]. 

(iii) When 1,1  R  and niui ,...2,11  . (2.1) reduces to the 
measure due to Shannon [6]. 

Further consider  
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(2.2) 

 
where 1,   RR . 
(i)For 1 , (2.2) reduces to the mean length due to Singh, Kumar and 

Tuteja [8]. 
(ii)For niui ,...2,11,1  . (2.2) reduces to the mean length due to 

Boekee et al [1]. 
(iii)For ,1,1,1  iuR  , (2.2) reduces to the optimal code length 

defined by Shannon [6]. 
 We now establish a result, that in a sense, gives a characterization of 
 UPH R ,  under the condition  

(2.3)  
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Remark: For niu i ,...2,11,1   and 
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1, (2.3) is a 

generalization of (1.4). 
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Theorem 1: For every code whose lengths nlll ,...,, 21  satisfies (2.3), the 
average length satisfies 

(2.4)    UPHUPL RR ,,    
equality holds if and only if 
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(2.5) 

 
Proof: we use Holders inequality [7] 
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(2.6) 

 
for all  01,,...,2,1,0,0  pniyx ii  and 111   qp  
with equality if and only if there exists a positive number c such that  
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  and Rq  1  in (2.6) and using (2.3), Also if 1R  we get 
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(2.8) 

 

Dividing both sides of (2.8) by
R
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 , we get 
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Raising both sides to the power 1,1
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R
R  for 1R and 

after suitable operations, we obtain the result (2.4). For 10  R , the 
inequality (2.4) can be proved in a similar fashion. 

Theorem 2: For every code with lengths nlll ,...,, 21  satisfies (2.3). 
 UPLR ,  can be made to satisfy the inequality 
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(2.9) 

 
Proof: Let il  be the positive integer satisfying the inequality  
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(2.10) 

 
Consider the interval  
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of length 1. In every i , there lies exactly one positive number il  such 

that  
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(2.12) 

 
We will first show that sequence nlll ,...,, 21 , thus defined satisfies (2.3), from 

(2.12) we have 
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(2.13) 

Multiplying both sides by 
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1  and summing over ni ,...,2,1 , we get (2.3). 

The last inequality in (2.12) gives  
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Multiplying both sides by 
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 and summing over ni ,...,2,1  and 

simplifying, gives (2.9). For 10  R , the proof of the upper bound of  UPLR ,  
follows along the similar lines. 

As 2D , we have 
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R  from which it follows that the upper 

bound of  UPLR ,  in (2.9) is greater than unity. 
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