Global Journal of Mathematical Sciences: Theory and Practical.
ISSN 0974-3200 Volume 5, Number 1 (2013), pp. 53-67

© International Research Publication House
http://www.irphouse.com

Invariant Monotonicity (Quasi &Pseudo) and
Invexity

“S.K.Pradhan, “D.K.Dalaiand ~~ R.B. Dash

* Department of Mathematics, D.A.V. College Koraput-764001,
Odisha, India
E-mail address: sarojkantap@ yahoo. in

** Reader in Mathematics, S.B. Women’s College, cuttack-753001,

Odisha, India
E-mail address:drdalai@yahoo.com

*** Reader in Mathematics, Ravenshaw University, cuttack-753001,

Odisha, India
E-mail address: rajani _bdash@radif mail.com

Abstract

Several Kkinds of invariant quasi and pseudo monotone maps are
introduced. Some examples are given which show that every quasi and
pseudo monotone maps are invariant quasi and pseudo monotone maps.
Relationships  between generalized invariant quasi and pseudo
monotonicity and generalized invexity are established.

Our results are generalizations of those presented by X.M.Yang, X.Q
Yang and K.L.Teo.

1. Introduction:-

Convexity is a common assumption made in mathematical programming. In
recent years, there have been increasing attempts to weaken the convexity
condition. Consequently, several classes of (generalized) invex functions have
been introduced in the literature. More specifically, the concept of invexity was
introduced in Ref [1], where it is shown that the Kuhn-Tucker conditions are
sufficient for (global) optimality of nonlinear programming problems under
invexity condition. In Ref [2]-[3], Weir and Mond introduced the concept of
pre invex functions, and applied it to the establishment of the sufficient
optimality conditions and duality in (multiobjective) nonlinear programming. In
Ref [4] Mohan and Neogy showed that, under certain conditions, an invex
function is preinvex and a quasiinvex function is prequasiinvex. Convexity of a
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real-valued function is the monotonicity of a vector valued function and
convexity of real-valued function is equivalent to the monotonicity of the
corresponding gradient function. An important breakthrough generalization of
this relation was given in Ref [5] for various psedo/quasiconvexities and
psedo/quasimonotonicities.

We introduced several types of generalized invariant monotonicities which
are generalization of the (strict) monotonicity, (strict) pseudomonotonicity and
quasimonotoniciy mentioned in Ref [5].The main aim of this paper is to
establish relations among generalized invariant monotonicities and generalized
invexities.Note that the conditions assumed in this paper are different from
those assumed in Ref. [6]-[7]. Several examples are given to show that these
generalized invariant monotonicities (quasi and pseudo) are proper
generalization of the corresponding generalized monotonicities. Moreover, some
examples are also presented to illustrate the properly relation among the
generalized invariant monotonicities.

In this paper we further generalized the idea of X.M.Yang, X.Q.Yang and
K.L.Teo in Ref [8] taking into account of three variables instead of two
variables

2. Invariant Quasimonotone Maps
Definition 2.1. See Ref 5. A map F is Quasimonotone on a set " of R" if,

for every point x, y, z € T', (y—x) F(x)>0 implies(y—x) F(y)>0
(z—y) F(y)>0 implies (z—y) F(y)>0
(x—2)" F(y)>0 implies(x—z)" F(y)>0.

Definition 2.2. Let ' of R" be an invex set with respect ton. A map F is
invariant quasimonotone with respect to the same »n on T if, for every

distinct point X, y, z € I' there exist7:R" xR"xR" — R" such that

17(y,x,z)T F(x)>0 implies 17(x,y,z)T F(y)<o0
17(x,z,y)T F(y)>0 implies 17(x,y,z)T F(z)<0

n(y,x,z)" F(z)>0implies 7(y,z,x)" F(x)<0

Assumption A. Let the set ' be invex with respect ton, and let f:I' >R
.Then

fz+n(xy.2)<f(X), f(y+nzxy)<f@) . f(x+n(y.z,x)<f(y)

Remark 2.1. Assumption A is just the inequality of the definition of
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preinvexity with
A=L1,=1,=0

Assumption B. Letm;:X xXxX —R" . Then, for any x, y, z eR" for
A €[0]].

(Y, Y,y +21(x,y,2)) = =An(x,y,2)

n(x.y+4,m2)=1-2,)n(xy,2)

n(xy,z+A,m)=(1-2,)n(x,y,z)

Remark 2.2. Every quasimonotone map is an invariant quasimonotone map,
but the converse is not necessarily true with

n(x,y,z)=2z-x-y
n(z,x,y)=2y-x-z
n(y,z,x)=2x-y-z
Where A+A4,+4,=1

Example 2.1. Define the map F and n as
F(x) :(sin2 X,.COS X, ,Sin” X,.COSX, , sin’ x3.cosx3), x €[0,7]x[0,7]x[0, 7],
cosy,(sinx, —siny,) cosy,(sinx, —siny,) cosy,(sinx, —siny;)
sinz, ’ sinz, ’ sinz,

X,Y,2Z E[O,ﬂ'] X[O,ﬂ'] X[O,ﬂ']

]

n(x,y.z)=[

cosx,(siny, —sinx, )

: .Sin® X, Cos X, +
sinz,

n(y, x,z)T F(x)=

CoSX,(siny, —sinx,) . COS X,(siny, —sin x
2(Sin Y, 2).sm2x2cosx2+ 5(sin ys :)

. _ .Sin? X, COS X,
sinz, sinz,

(siny, —sinx,)sin? x,.cos” x,
sinz,

=2

Clearly, F is invariant quasimonotone with respect to n. Let

X:(37T/4,37T/4,37T/4),y:(77/4,71/4,77/4)

Then,
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(y=x) F(x)=37/442 >0, but (y—x) F(y)=-37/42<0
Thus, F is not quasimonotone.

Definition 2.3. See Ref. 5. Let I' of R" be invex set with respect ton. A
function f is prequasiinvex with respect to the same n on Tif, for all x, vy, z
e T A 6[0,1]

f(y)<f(x) implies f(y+An(x,y,2))<f(x), z fixed
f(z)<f(y) implies f(z+An(x,y,2))<f(y), x fixed
f(x)<f(z) implies f(x+2An(x,y,z))<f(z2) .,y fixed
Lemma 2.1. See Ref .6.Let T of R" be an invex set with respect to 7 ,and

let n satisfy Assumption B.Then, a differentiable function f is prequasiinvex
with respect to n on T'if and only if ,for every of points x,y,z T,

f(y)< f(x) Implies n(y,x,z)" Vf(x)<0

Proof. Let ' of R" be an invex set with respect to n , let n satisfy
Assumption B

Let f is prequasiinvex with respect to n on I' , we have
f(y)< f(x) implies f(y+an(x,y,2))<f(x)
f(y+an(x,y.z))- f(x)<0

f(y+an(x,y,z)-x)=0

n(y,x,z) Vf(x)<0 (Assumption B)

Conversely f(y)<f(x) implies 7(y,x,z)" Vf(x)<0
f(y+an(x,y,z)-x)=0
f(y+an(x,y.z))- f(x)<0
f(y+An(xy.z)) < f(x)
Theorem 2.1. Let ' of R" is an invex set with respect tor, and let f be a

differentiable function on TI'.If f and 7 satisfy Assumption B, then f is
prequasiinvex with respect to the same n on T' if and only if Vf s
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invariant quasimonotone with respect to the same n on I' and, for all x, y, z
el

f(y)< f(x) implies. f(y+an(x,y,2))<f(x)

Proof: Suppose that f is prequasiinvex w.rt n . It is obvious that Inequality
(C) is true. Let X, y, z € T" be such that

n(y,x,z)" VE (x) >0 (1)

Then we have f(y)> f(x).

By lemma 2.1 f(y)< f(x) implies that n(x,y,z)' Vf(y)<0.

This shows that Vf is invariant quasimonotone with respect to the samen.

Conversely, suppose that Vf is invariant quasimonotone with respect ton.

Assume that f is not prequasiinvex with respect to the samern. Then, there
exist X, y, zeI' such that

f(y)< f(x);
Furthermore, there exist a 4 <(0,1) such that
f(y+Zn(x,y,z))> f(x)> f(y). )

By mean value theorem, there exist 1,,4, (01)such that

f (y +An(x,y, z)) —f (y +n(x,y, z))

= (Z—l)n(x, y,z)' Vi (y+24,m(x,y,2)) 3)
f (y +An(x,y, z)) — f(y)=2n(x,y, z)T \Yi (y +2,m(X, Y, z)) (4)
0<A,<A<A <1 (5)

Then, from (2)-(5) and Inequality (C), we have
n(x, y,z)T \Yi (y +2A.0(X, Y, z)) <0 (6)
n(x,y,z)TVf(y+ﬂ,2n(x,y,z))>0 (7)

From Assumption B, we have

n(y+A.n(%y,2).y+ Agi(x,y,2))
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X,Y,2).¥ + 421X, ¥,2) + (A, = 22 )1(x, . 2))
n(y+Aam(%,¥,2),y + Aom(%,¥,2) +[(Ay = 4,) (1= 2, )I( %, y + 2,m(x,¥.2)))
(2 =22) 1 @=2)nlx, y + 2,(.y.2))

(42 = Au)n(x,y,2) (8)
n(y+2A:m(x,y,2),y+ A,n(x,y,2))

n(y+A.m

(
(

Yy +2Am(%,2), Y+ 4m(%, ¥, 2) = (A, = 2, )n(x, . 2))

n(y+A(x¥,2).y + 21(x, ¥, 2)+ 0 ¥,y + (A = 2, )m(x,¥.2)))
-0y, Y+ (A= 2,)n(x.y.2))
= (A, 2A,)n(x,y.z) )

Then, by (6) — (9), it follows that
n(y+lzn(x,y,z),y+lln(x,y,z)TVf(y+ﬂ,1n(x,y,z)))>0

n(y+ 2an(x,y,2),y + A,m(%, y,2)' Vi (y+2,m(x.Y, z))) >0

These two inequalities contradict the invariant quasimonotonicity of Vf .

3. Invariant Pseudomonotone Maps.

Definition 3.1. Letl = R". F: T — R" is said to be pseudomonotone on T if,
for every pair of distinct points X, y, z eI’ ,

(y=x)' f(x)>0 implies (y-x) f(y)>0
(z—y) f(y)>0 implies (z—y) f(2)>0
(x—2)" f(z)>0 implies (x-2)' f(x)>0.

Definition 3.2. Let T of R" be an invex set with respect to n.Then F:

I' > R"is said to be invariant pseudomonotone with respect to n on TI'of R"
if, for every pair of distinct points X, y, z I’

n(z,y,x) F(x)>0 implies 7(z,x,y) F(y)>0 , z fixed

n(y,x,z) F(z)>0 implies n(y,z,x) F(x)>0 , y fixed
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n(x,z,y) F(y)>0 implies n(x,y,z) F(z)>0 , x fixed

Definition 3.3. A differentiable function f on a subset I" of R" s
pseduoinvex with respect to n on T if, for every pair of distinct points X, Y,

Z I

n(z,y,x) VE(x)>0 implies f(y)> f(x), z fixed
n(y,x,z) Vi (z)>0 implies f(x)>f(z), y fixed
n(x,z,y) VE(y)>0 implies f(z)> f(y), x fixed

Remark 3.1. Every pseudomonotone map is an invariant pseudomonotone map
with
n(x,y,z)=2z-x-y, but the converse is not necessarily true.

Example 3.1 Define the map F and 7 as
F (X, X, X3) = (1,€05X,,€08X;), (X,,X,,%;) €(/2,7/2,712)
n(x,y,2) = [sinx, —siny,,(sinx, —siny, )/ cosy,,(sin x, =siny;)/ cos s ],
X= (X%, %) Y = (Y, Vo V3 ) 2=(20,2,,2) €(m 1 2,71 2,701 2)
Clearly, F is invariant pseudomonotone with respect to r .Let

X:(ﬂ/3,0,0),y:(ﬂ/6,ﬂ/6,ﬂ/6),z:(ﬂ/4,ﬂ/4,ﬂ/4)

Then,

(y—x)T F(x)=0 and (y—x)T F(y) :(EIG)(%—lj <0

Thus, F is not pseudomonotone.

Remark 3.2. Every invariant monotone map is an invariant pseudomonotone
map with respect to the samer, but the converse is not necessarily true.

Example 3.2. Define the maps F and 5 as
F(x)=cos’x, X E(—ﬂ'/Z,ﬂ'/Z,ﬂ'/Z)

n(x,y,z)=cosy+cosz—2cosx, X,y,ze(-n/2,x/2,712)

Clearly, F is invariant pseudomonotone with respect to 5 on



60 S.K. Pradhan et al
(—71'/2,71’/2,71’/2).

Let

X=-716, y=nld, z = 7/3
Then,
n(z,x,y) F(x) +n(z,y,x) F(y)>0

Thus, F is not invariant monotone with respect to n on(-x/2,7/2,712).

Remark 3.3. Every invariant pseudomonotone map is an invariant
guasimonotone map with respect to the same p but the converse is not true.
Example 3.3. Define the maps F and n as

F(x) =sin®x.cosx, x €[0,7],

n(x,y,z)=cosy(sinx—siny)/sinz x,y,z €[0,7] .

Clearly, F is invariant quasimonotone with respect to 7 .Let

x=rnl2, y=nld, z=r/6.

Then,
1z, y,x)T F(x)=0, but 17(z,x,y)T F(y)>0.

Thus, F is not invariant pseudomonotone with respect ton .

It is well known that every pseudoconvex function is quasiconvex. This
result can be generalized to the invex-type function. The details are given in
the following lemma.

Lemma 3.1. Let f and n satisfy Assumption B.Assume that the differentiable
function f is pseudoinvex with respect to » on an invex set I' of R" and
that, for all x, y, zeT,

© f(y)<f(x) implies f(y+n(x,y,z))<f(x) .
Then, f is prequasiinvex with respect to the same 5 onT.

Proof. Suppose f is pseudoinvex with respect to n onI'. Assume that f is
not prequasiinvex with respect ton . Then there exist X, y, z I’ such that
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f(y)< f(x); z fixed

Furthermore, there exist a 4 €(0,1) such that forx = y+An(x,y,z),
F(x)> f(y)>f(x).

From Inequality (c) and the above inequalities, there exists
y=y+An(x,y,z), for 2 €(01), such that

f(y)= max f(y+An(x.y.z))

Then, it follows that
n(x,y,z)" Vi(y)=0.

From Assumption B, we have
n(x,y,z):(l—ﬂ,*)n(x,y,z), n(y,v.z)=-2n(x,y,z),
Hence,

n(x,y,2)Vi () = (1— I")n(x, y,z) VE(¥)=0.

Since f is pseudoinvex with respect ton, it holds that
f(¥)< (%),

Which is a contradiction. Thus, f is prequasiinvex with respect toy .

Theorem 3.1. Let T" of R" be an open invex set with respect tor, let f be

differentiable on I of R", and let f and 5 satisfy Assumption A and B

respectively.
Then, f is pseudoinvex with respect to »on I if and only if Vf s

invariant pseudomonotone with respect to n on T .

Proof. Suppose that f is pseudoinvex with respect to » on I . Let X, Y,z
el X#zy=#2

be such that n(x,y,z) Vf(y)>0.

We need to prove that

n(y.x,z)" Vf(x)<0.
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Assume the contrary, i.e.,
n(y,x, z)T vf(x)>0. (1)
By the pseudoinvexity of f with respect ton, we have X, y, z I’

n(y,x,z) VE(x)>0 implies f(y)> f(x) 2)

From Lemma 3.1, every pseudoinvex function is also prequasiinvex with
respect to the same 5 .It follows from (2) and lemma 3.1 that

n(y,x,z)" Vf (x) <0.

Which contradicts (1).Therefore, Vf is invariant pseudomonotone with
respect ton .

Conversely, suppose that Vf is invariant pseudomonotone onT .

Let x, y, zel', x=y=z,be such thatn(x,y,z)" Vf(y)>0. (3)

We need to prove that f (x) > f (y).

Assume the contrary i.e.,

FO)<f(y) (4)
By the mean- value theorem, we have

f(y+n(x,y,z))— f(y)= n(x,y,z)TVf (y+zn(x,y,z)) (5)

for some 1 €(0,1). By assumption A and B it follows that

f(y+n(xy,2))< f(x) (6)
n(y. ¥,y +An(x,y.2)) = =An(x,y.2) (7
Now, from (4) - (7), we have

n(y,y,y+zn(x,y,z))TVf(y+zn(x,y,z))>0 (8)

Since Vf is invariant psedomonotone with respect ton, it follows from (8)
that

n(y+Zn(x,y.2).y.y) Vf <0.
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From Assumption B, we have

n(x,y,z)" Vf (y) <0.

Which contradicts (3). Hence, f is pseudoinvex with respect toy .

4. Strictly Invariant Pseudomonotone Maps

Definition 4.1. A map F is strictly pseudomonotone on a set " of R" if, for
every pair of distinct points X, y, zel"

(y—x) F(x)>0 implies (y-x)'F(y)>0
(z—y) F(y)>0 implies (z—y) F(2)>0
(x—2) F(z)>0 implies (x—z)' F(x)>0.
Definition 4.2. Let T of R" be an invex set with respect ton. A map F is

strictly invariant Pseudomonotone with respect to non Tjf, for every pair of
distinct points

X, Y, zel',

n(z,y,x)' F(x) >0 implies 7(z,x,y) F(y)<0
n(y,xz) F(z)>0 implies n(y,z,x)" F(x) <0

n(xz,y) F(y)>0 implies n(xy,z) F(2) <0.

Remark 4.1. Every strictly pseudomonotone map is a strictly invariant
pseudomonotone map withn(x,y,z)=2z-x—y, but the converse is not
necessarily true.

Example 4.1. Define the maps F and n as

F(x) = sinx+cosx, xe(0,7)

n(x,y,z)=(siny+cosy)(cosx—cosy)(sinz+siny) x,y,z (0,r)

Clearly, F is strictly invariant pseudomonotone with respect to n on(O,ﬂ).
Let,
x=3rl4, y=nld, z =y=nl3.

Then, F is not strictly pseudomonotone on (0,7) .
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Remark 4.2. Every strictly invariant monotone map is a strictly invariant
psedomonotone map with respect to the same n map, but the converse is not

necessarily true.

Example 4.3. Define the maps F and n as

F(x)=sinx.cos’x, X e(-n/2,x/2,7/2)

n(x,y,z)=sinycosz(cosy—cosx) x,y,ze(-z/2,x/2,7x12) .

Clearly, F is invariant pesudomonotone with respect to 5 on
(—71'/2,71’/2,71’/2).

Let

X=-716, y=nl6, z=71/6.

Then,
n(y,x,z) F(x)=0 and n(x,y,z) F(y)=0.

Thus, F is neither strictly invariant psedomonotone nor strictly invariant
monotone with respect to the same on(-z/2,7/2,7/2) .

Definition 4.3. Let T of R" be an open invex set with respect to 7.A
differentiable function f on T is strictly pseudoinvex with respect to n on I
if, for every pair of distinct points x,y,zel",

n(y,x,z) VE(x)>0 implies f(y)>f(x).
Theorem 4.1. Let T of R" be an open invex set with respect ton, and let f
be differentiable on I'.If f and nsatisfy Assumption A and C respectively,

then f is strictly pseudoinvex with respect to n on T if and only if Vfis
strictly invariant pseudomonotone with respect to n on T .

Proof. Suppose that f is strictly pseudoinvex with respect to n onI .

Let X, y, zel' x#y =z, such that
n(y,x,z)" Vi (x) > 0. (1)

We need to show that

n(x,y,z)" Vi (y) <0.
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On the contrary, we assume that

n(x,y,z)" Vi (y)>0.

From the strict pseudoinvexity of f with respect to »n , it follows that

FO)>1(y). (2)

On the other hand, from the strict pseudoinvexity of f with respect ton,
(1) implies that

f(y)> (%),
which contradicts (2).

Conversely, suppose that Vf is strictly pseudoinvex with respect to 7on
C.

Let x, y, zel',x#y=#2z, be such that
n(y,x,z)" VE(x) >0 (3)

We need to show that

F(y)>f(x) (4)

On the contrary, we assume that

f(y)<f(x) (%)
By mean value theorem, we assume that

f(x+ n(y,x,z)) —f(x)= n(y,x,z)TVf (x +An(y, x,z)) (6)
For some 0<A<1 . By Assumption A,

f(x+n(y,x,z)< f(y). (7
Now, from (4)-(7) and Assumption B, we have

n(x,x+zn(y,x,z), z)TVf(x+Zn(y,x,z))

= —Zn(y,x,z)TVf(x +Zn(y,x,z))20 (8

Since Vf s strictly invariant pseudomonotone with respect ton
We conclude that
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n(x +Zn(y,x,z),x,z)TVf (x)<0. (9)

Again, from Assumption B, we note that

n(x +An(Y, X,2), X, z)T

n(x +An(y,%,2), x+ An(y, X, 2) + n(x, X+ An(y,x,z), z))
—n(x,x+zn(y,x,z),z)

an(y, x,z).

Thus, it follow from (9) that
n(y, x,z)T Vi (x) <0,

which contradicts (3)
Hence, f(y)> f(x).

5. Conclusion
In this paper, we have introduced concepts of generalized invariant Quasi and
pseudo Monotonicities and established their relations with generalized invexities.
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