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Abstract
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1. Introduction

In recent literature,we find many topologists have focused their research in the direction
of investigating various types of generalized continuity.One of the outcomes of their re-
search leads to the initiation of different orientations of contra-continuous functions such
as contra-continuity [5], contra a-continuity [5], (a,s)-continuity [3] and so on. Recently
Thivagar et al. [7] introduced a new class of sets called A,-closed sets. In this paper, us-
ing the notion of A,-closed sets, a new variation of contra-continuous functions which is
a generalization of (a,s)-continuous functions called (A ,,s)-continuous functions is intro-
duced and investigated. We also investigate the relationships among (A, s)-continuous
functions, separation axioms, connectedness, compactness and normality.
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2. Preliminaries

Throughout this paper (X, t) and (Y,o0) and (Z, n) (or simply X, Y and Z) represent
non-empty topological spaces on which no separation axioms are assumed. A subset
A of a topological space X is called a semi-open set(resp.pre-open set, 3)-open set if
A C cl(int(A)) (resp. A C int(cl(A)), A C cl(int(cl(A))). The family of all semi-open
(resp.pre-open, B-open) sets of X is denoted by SO(X)(resp.PO(X), BO(X)). A subset
A of a space X is called regular open if A = int(cl(A)).The complement of regular open
is called the regular closed set. The family of all regular open sets (resp. regular closed)
in X is denoted by RO(X)(resp.RC(X)). A subset A of a space X is called 5-closed [6] if
A = cls(A), where cls(A) = {x € X :int(cl(U))NA # ¢,U € T and x € U}. The
complement of §-closed set is called §-open set. A subset A of a topological space X
is called an a-open set [5] if A C int(cl(ints(A)). The complement of an a-open set is
called an a-closed set. The family of all a-open(resp.a-closed) sets of X is denoted by
aO(X) (resp.aC(X)).

Definition 2.1. A subset A of a topological space (X, 1) is said to be a A,-set [7] if
A = Ay(A) where A,(A)="{G:G €a0(X,1), A C G}.

Definition 2.2. A subset A of a topological space (X, 1) is called a A,-closed set [7]
A =T N C where T is a A,-set and C is an a-closed set. A is said to be A,-open if
X — Ais A,-closed.

Definition 2.3. A function f : (X,t) — (Y,0) is called
(i) a-continuous [5] if f -1 (V) is a-open in X for every open set V in Y.
(i) almost continuous [11]if f “L(v)is open in X for every regular open set V in Y.

(iii) almost a-continuous [3] if f (V) is a-open in X for every regular open set V in
Y.

(iv) a-irresolute [5] if f “L(V)is a-open in X for every a-open set Vin Y.

(v) R-map [2]if f~'(V) is regular open in X for every regular open set V in Y.

3. (A,,s)-continuous functions

In this section, a new type of contra-continuity called (A,,s)-continuity which is weaker
than (a,s)-continuity is introduced and some of its characterizations are investigated.

Definition 3.1. A function f : (X,7) — (Y, 0) is called (A,,s)-continuous if f_l(V)
is A,-closed in X for every regular open set V in Y.

Example 3.2. Let X = {a,b,c,d} =Y, v = {¢,{a},{b}, {a,b},{a,b,c},{a,b,d}, X}
and o = {¢,{a},{b}, {a,b},{a,b,c},Y}. Define f : (X,7r) - (Y,0) by f(a) =
b, f(b) =d, f(c) =a and f(d) = b. Then f is (A,,s)-continuous.
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Theorem 3.3. The following are equivalent for a function f : (X, 1) — (Y,0):
(i) fis (Ag4, s)-continuous.
(i1) the inverse image of every regular closed set of X is A,-open.

(iii) foreachx € X and for each regular closed set V of Y containing f(x), there exists
a Ag-open set U of X containing x such that f(U) C V.

(iv) for each x € X and for each regular open set V of Y not containing f(x), there
exists a A,-closed set K of X not containing x such that f “(v)c K.

Proof.

(i) < (i1) Suppose f is (A,,s)-continuous. Let V be a regular closed set of Y. Then
Y-V is regular open in Y. By (i), f~'(Y — V) = X — f~1(V) is A,-closed in X
which implies f~'(V) is Ag-open in X. Thus (ii) holds. Similarly we can prove
(i) = ().

(il)) = (iii) Let x € X and V be a regular closed set of Y containing f(x). By (ii),
f_l(V) is Ag-open in X containing x. Take U = f_l(V). Then U is a A,-open
set in X containing x and f(U) C V. Thus (iii) holds.

(iii)) = (ii) Let V be aregular closed setof Yand x € f _I(V). Then f(x) € V. By(iii),
there exists a A -open set U, containing x such that f(U,) C V which implies
U, C f_l(V). Hence f_l(V) =U{U, : x € f_l(V)}. Since arbitrary union of
Ag4-open set is A,-open [7], f_1 (V) is Ag-open in X. Thus (ii) holds.

(iii)) = (iv) Letx € X and V be aregular open set of Y not containing f(x). Then Y —V
isaregularclosed setin Y containing f(x). By(iii), there existsa A,-openset Uin X
containing x such that f(U) C Y—V. ThenU C f~'(Y=V) = X— (V). Let
K = X — U. Then K is a A,-closed set not containing x such that f_l(V) C K.
Thus (iv) holds.

(iv) = (iii) Let x € X and V be a regular closed set of Y containing f(x). Then Y — V
is a regular open set in Y not containing f(x). By (iv), there exists a A,-closed set
K in X not containing x such that f_l(Y — V) C K. Then X — f_l(V) C K
which implies f(X — K) C V. Let U = X — K. Then U is a A,-open set in X
containing x such that f(U) C V. Thus (iii) holds. [ |

Theorem 3.4. The following are equivalent for a function f : (X, 1) — (Y,0):
(i) fis (Ag4, s)-continuous.
(ii) f_1 (int(cl(G)) is A,-closed in X for every open set V of Y.

(iii) f_1 (cl(int(F))is Ag-open in X for every closed set F of Y.
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(iv) f_l(cl(U)) is A4-open in X for every U € BO(Y).
v) f~Ncl(U)) is Ag-open in X for every U € SO(Y).
(vi) f~Nint(cl(U)) is Ag-closed in X for every U € PO(Y).

Proof.

(i) = (ii) Let G be an open set in Y. Then int(cl(G)) is regular open in Y. By (i),
£ (int(cl(G))is Ag-closed in X.

(ii)) = (i) Let V be aregular open set in Y. Since every regular open set is open by (ii),
f_1 (int(cl(V)) = f_1 (V)is A,-closed in X. Hence fis (A, s)-continuous.

(i) = (iii) Let F be a closed set in Y. Then cl(int(F)) is regular closed in Y. By (i),
f_1 (cl(int(F))is A, -open in X.

(iii)) = (i) Similar to the proof of (i) = (i)

(i) = (iv) Let U be a B-open set in Y. Then by theorem 2.4 of [1] cl(U) is regular
closed in Y. By (i), f_1 (cl(U))is Agy-open in X.

(iv) = (v) Follows from the fact that SO(Y) C BO(Y).

(v) = (vi)Let U € PO(Y). Then Y — int(cl(U)) is regular closed and hence it is
semi-open. We have X — £~ (int(cl(U))) = f~' (Y —int(cl(U)) = f~ ' (cl(Y —
int(cl(U))) is Ag-open in X. Hence f_l(int(cl(U))) is A,-closed in X.

(vi) = () Let U € RO(Y). Then U € PO(Y) and hence f~'(U) = f~!(int(cl(U))
is A4-closed in X. [

Lemma 3.5. [11] For a subset A of a topological space (Y, o), the following properties
hold:

(1) acl(A) =cl(A) forevery A € BO(Y).

(i) pcl(A) = cl(A) forevery A € SO(Y).

(iii) scl(A) = int(cl(A)) forevery A € PO(Y).

Corollary 3.6. The following are equivalent for a function f : (X,1) — (Y, 0):

(i) fis (Ag,s)-continuous.

(ii) f_l(ozcl(U))is Ag-openin X forevery U € BO(Y).

(i) f~ (pel(U))is Ag-open in X for every U € SO(Y).

@iv) f_l(scl(U))is Ag-closed in X forevery U € PO(Y).

Proof. Follows from Lemma 3.5. |
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4. The related functions with (A, s)-continuous functions
Definition 4.1. A function f : (X,7) — (Y, 0) is said to be
(i) strongly continuous [8] if f - (V) is clopen in X for every set V of Y.

(i) almost s-continuous [10] if foreach x € X and V € SO(Y, f(x)), there exists an
open set U in X containing x such that f(U) C scl(V).

(iii) perfectly continuous [12] if f - (V) is clopen in X for every open set V of Y.
(iv) regular set-connected[4] f - (V) is clopenin X forevery Ve RO(Y).
(v) RC-continuous [5]if f (V) is regular closed in X for every open set V of Y.

(vi) contra R-map [3]if f - (V) is regular closed in X for every regular open set V of
Y.

(vii) contra-super-continuous [5] if for each x € X and each F € C(Y, f(x)), there
exists a regular open set U in X containing x such that f(U) C F.

(viii) almost contra-super-continuous [3] if f ~1(V) is 8-closed in X for every regular
open set V of Y.

(ix) contra a-continuous [5] if f ~1(V) is a-closed in X for every open set V of Y.

(x) (a,s)-continuous [3] if f~'(V) is a-closed in X for every regular open set V of Y.

Remark 4.2. The following diagram holds for a function f : X, 7) — (Y,0)

strongly continuous > almost s-continuous

J

Perfectly continuous => reqular set-connected

J J

RC-continuous —> contra R-map

$ J

contra-super-continuous => almost contra-super continuous

J J

contra a-continuous —> (a,s)-contmuous

J

(Aa, s) -continuous

None of the implications is reversible as shown in the following example and in the
related papers.
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Example 4.3. Let X = {a,b,c,d} =Y, v = {¢,{c},{a,d},{a,c,d}, X} and 0 =
{¢,{a}, {b,c}, {a,b,c}, Y}. Define a function f : (X,t) > (Y,0) by f(a) =c, f(b) =
d, f(c)=aand f(d) = b. Then fis (A, s)-continuous, but not (a, s)-continuous since
f_1 ({a}) = {c} is not a-closed in X where {a}is regular open in Y.

Definition 4.4. A space (X, ) is said to be a A,-space if every A,-closed subset of X
1s a-closed in X.

Definition 4.5. A space (X, 7)is said to be locally A,-indiscrete if every A ,-open subset
of X is a-closed in X.

Theorem 4.6. If (X, 1) is a A -space and f : (X,t) — (Y,0) is (A,,s)-continuous
then it is (a,s)-continuous.

Proof. Let V be any regular-open subset of Y. Since f is (A, s)-continuous, f _I(V)
is Ag-closed in X. Since X is a Ag-space, f~'(V) is a-closed in X which implies f is
(a,s)-continuous. [ |

Theorem 4.7. If f : (X,7) — (Y, 0) is (A4,s)-continuous and (X, 7) is a locally A,-
indiscrete space, then it is almost a-continuous.

Proof. Let 'V be any regular open subset of Y. Since f is (A, s)-continuous, f _I(V) 18
Ag-closed in X. Since X is a locally A,-indiscrete space, f~'(V) is a-open in X which
implies f is almost a-continuous. |

A topological space X is said to be extremely disconnected [3] if the closure of every
open set of X is open in X.

Theorem 4.8. Let (Y, o) be extremely disconnected. If f : (X,7) — (Y,0) almost
a-continuous, then it is (A,,s)-continuous.

Proof. LetV be aregular closed set in Y. Since Y is extremely disconnected, by lemma
5.6 of [13], V is clopen and hence V is regular open in Y and so f_1 (V) is a-open in X.
By proposition 4.20 [7], f~'(V) is Ag-open in X. Hence f is (A4,s)-continuous. |

Remark 4.9. The reverse implication of the above theorem need not be true as shown
by the following example.

Example 4.10. Let X = {a,b,c,d} =Y, v = {¢, {a}, {b}, {a,b}, {a,b,c}, X} and 0 =
{¢,{a}, {b},{a, b}, {c,d}, {a,c,d},{b,c,d}, Y}. Define a function f : (X,7) — (Y,0)
by f(a) =c, f(b) =d, f(c) = aand f(d) = b. Then fis (A, s)-continuous, but not
almost a-continuous since f -1 ({b}) = {d} is not a-open in X where {b} is regular open
in Y and Y is extremely disconnected.

Theorem 4.11. Let (Y,o) be extremely disconnected and (X, 7) is a A,-space. If
f:(X,1) > (Y,0)is (Ag,s)-continuous, then it is almost a-continuous.
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Proof. Let V be a regular open set in Y. Since Y is extremely disconnected, by lemma
5.6 of [13], V is clopen and hence V is regular-closed in Y and so f_1 (V)is Ay-open in
X. Since X is a A,-space, f “L(v)is a-open in X. Hence f is almost a-continuous. H

Definition 4.12. A topological space (X, 7) is said to be Py, [15] if for any open set V
of X and each x € V, there exists K € RC(X,x)suchthatx € K C V.

Theorem 4.13. Let f : (X,t) — (Y, 0) be a function. If fis a (A, s)-continuous and
Xisa A,-space and Y is Py, then f is a-continuous.

Proof. LetV be any open set of Y. Since Y is Py, there exists a subfamily ® of RC(Y)
suchthatV = U{A : A € ®}. Sincefis (A, s)-continuous and X is a A,-space, f_1 (A)
is a-open in X for each A € ® and so (V) is a-open in X. Thus f is a-continuous. W

Definition 4.14. A topological space (X, 7) is said to be weakly Py, [9] if for any V €
RC(Y) and each x € V there exists F € RC(X,x)suchthatx € F C V.

Theorem 4.15. Let f : (X,7) — (Y,0) be a (A, s)-function. If Y is weakly Py, and
X is a A,4-space, then f is almost a-continuous.

Proof. Let V be any regular open set of Y. Since Y is Py ,there exists a subfamily & of
RC(Y) suchthat V = U{A : A € ®}. Since fis (A, s)-continuous and X is a A,-space,
f_l(A) is a-open in X for each A € ® and so f_l(V) is a-open in X. Thus f is almost
a-continuous. [ |

Theorem 4.16. Let f : (X,7) — (Y,0) be a function andlet g : X — X x Y be
the graph function of f defined by g(x) = (x, f(x)) for every x € X. If gis (Ag,s)-
continuous, then fis (A, s)-continuous.

Proof. LetV € RC(Y). Then X x V = X X cl(int(V) = cl(int(X)) x cl(int(V)) =
cl(int(X x V)). Hence X x V € RC(X x Y). Since gis (A, s)-continuous, f_l(V) =
g_l(X x V))is Ag-open in X. Hence f is (A, s)-continuous. |

Theorem 4.17. (Composition theorems) For two functions f : (X,7) — (Y,0) and
g:(Y,0) > (Z,p)letgo f : (X,7) — (Z,n) be a composite function. Then the
following properties hold:

(i) If fis a-irresolute and g is (a,s)-continuous, then g o f is (A4, s)-continuous.
(i) If fis (Ag, s)-continuous and g is a R-map, then g o f is (A, s)-continuous.

(iii) If f is contra a-continuous and g is almost continuous, then g o f is (Ag,s)-
continuous.

(iv) If fis almost a-continuous and g is contra R-map, then g o f is (A,, §)-continuous.

Proof. (i)LetV be aregular open set in Z. Since g is (a,s)-continuous, g_1 (V) 1is a-closed
in Y. Since f is a-irresolute f_l(g_l(V)) = (go f)_l(V) ia a-closed in X and hence
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Ag-closed in X. Thus g o f is (A, s)-continuous.
Proofs of (ii)-(iv) can be obtained similarly. [ |

Theorem 4.18. Let f : (X,7) — (Y,0) be an a-irresolute function and g : (Y,0) —
(Z,n) be a (Ag, s)-continuous function. If Yisa A,-spacethengo f : (X,1) — (Z,n)
is (A4, s)-continuous.

Proof. LetV bearegularopensetinZ. Since gis (A, s)-continuous, g_1 (V)is A,-closed
in Y. Since Y is a Aa-space,g_l(V)is a-closed. Since f is a-irresolute f_l(g_l(V)) =
(go f)_l(V) is a-closed in X and by proposition 4.2 [7], A,-closed in Y. Thus g o f is
(Ag4, s)-continuous. [ |

Theorem 4.19. Let f : (X,7) — (Y,0) be an a-irresolute function and g : (Y,0) —
(Z,n) be an almost a-continuous function. If Y is locally A,-indiscrete, then g o f :
(X,1) > (Z,n)is (Ag, s)-continuous.

Proof. Let V be a regular open set in Z. Since g is almost a-continuous, g~!(V) is a-
open in Y and by proposition 4.20 [7], g~'(V) is A,-openin Y. Since Y is a locally A,-
indiscrete, g_1 (V)is a-closed in Y. Since f is a-irresolute f_1 (g_1 (V) =(go f)_1 (V)is
a-closed in X and by proposition 4.2 [7], A,-closed in X. Thus go f is (A4, s)-continuous.

[ |

Definition 4.20. A function f : (X, 1) — (Y, 0) is said to be a*-closed if the image of
every a-closed set is a-closed.

Theorem 4.21. If f : (X,7) — (Y, 0) is a surjective, a*-closed function where X is
a Ag-space and g : (Y,0) — (Z,n)is a function such that g o f : (X,7) — (Z,n) is
(Ag, s)-continuous, then g is (A4, s)-continuous.

Proof. LetV be aregular open setin Z. Since go f is (A4, s)-continuous, (go f)™ (V) =
f_l(g_l(V)) is A,-closed in X. Since X is a A,-space, f_l(g_l(V)) is a-closed in X.
Now f is a*-closed and surjective implies f(f_l(g_l(V)) = g_l(V) is a-closed in Y.
By proposition 4.2 [7], g_1 (V) is Ag-closed in Y. Thus g is (A4, s)-continuous. [ |

S. Applications

In this section, we relate the concept of (A, s)-continuous functions to the classes of
A,-compact spaces and A,-connected spaces.

Definition 5.1. A topological space (X, t) is said to be weakly Hausdorff [5] if each
element of X is an intersection of regular closed sets.

Definition 5.2. A topological space (X, t) is said to be Ultra Hausdorff [5] if for every
pair of distinct points x and y, there exist disjoint clopen sets G and H containing x and
y respectively.
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Definition 5.3. A topological space (X, 7) is said to be A, — T if for every pair of
distinct points x and y,there exist A,-open sets G and H containing x and y respectively
suchthaty ¢ Gand x ¢ H.

Definition 5.4. A topological space (X, t) is said to be A, — T if for every pair of
distinct points x and y, there exist disjoint A,-open sets G and H containing x and y
respectively.

Theorem 5.5. The following properties hold for a function f : (X,7) — (Y,0):
(i) Iffisa(Ag,s)-continuous injection and Y is weakly Hausdorff, then X is A, — T7.

(i) If fis a (A4, s)-continuous injection and Y is Ultra Hausdorff, then X is A, — 75.

Proof.

(i) Since Y is weakly Hausdorff, for x # y in X, there exists V,W € RC(Y)
such that f(x) € V, f(y) ¢ V,f(y) € Wand f(x) ¢ W. Since fis (Ag,s)-
continuous, f_l(V)and f_l(W) are A,-opensetsin X suchthatx € f_l(V),y ¢
),y e f\(W)andx ¢ f~1(W). This shows that X is A, — Tj.

(i) Since Y is Ultra Hausdorff, for x # y in X, there exists disjoint clopen sets
V,W such that containing f(x) and f(y) respectively. Since fis (A,, s)-continuous,
f_l(V) and f_l(W) are disjoint A,-open sets in X such that x € f_l(V) and
y € f~Y(W). This shows that X is Ay, — T>. u

Definition 5.6. A topological space (X, 7) is said to be

(i) Ag-connected [7] if X cannot be written as a union of two disjoint non-empty
A,-open sets.

(i) Ag-ultra-connected if every two non-empty A,-closed sets of X intersect.

(iii) hyperconnected [14] if every open set is dense.

Theorem 5.7. Let f : (X, 1) — (Y,0) be a (A,,s)-continuous surjection. Then

(i) If X is A,-connected, then Y is connected.

(i) If X'is A,-ultra-connected, then Y is hyperconnected.

Proof.

(i) Suppose Y is not connected.Then there exist non-empty, disjoint open sets A and
B such that Y = A U B. Also A and B are clopen sets in Y. Since f is (Ag,s)-
continuous,f_1 (A) and f_l(B) are A,-openin X. Moreover f_1 (A) and f_1 (B)
are disjoint non-empty sets and X = f~'(A)U f~'(B) which implies that X is not
A,-connected. This is a contradiction to the fact that X is A,-connected. Hence
Y is connected.
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(i) Suppose Y is not hyperconnected.Then there exists an open set V such that V
is not dense in Y. Then there exists disjoint non-empty regular open sets A and
B in Y namely int(cl(V)) and Y-cI(V). Since f is a (A4,s)-continuous surjection,
f ~1(A) and f ~1(B) are disjoint non-empty A,-closed sets in X. By assumption,
the A ,-ultra-connectedness of X implies that f _1(A) and f - (B) must intersect.
By contradiction, Y is hyperconnected. |

Definition 5.8. A topological space (X, 7) is said to be
(i) A,-compact [7] if every A, -open cover[7]of X has a finite subcover.

(i1) S-closed [3] if every regular closed cover of X has a finite subcover.

Theorem 5.9. Let f : (X,7) — (Y,0) be a (A,,s)-continuous surjection. If X is
A,-compact, then Y is S-closed.

Proof. Let {V, : « € I} be any regular closed cover of Y. Since f is (A,,s)-continuous,
{f _I(Va) :a € I}isa Agz-open cover of X. Since X is A,-compact,there exists a finite
subset I of I such that X = U{f_l(Va) : o € Ip}. Since f is surjective, ¥ = U{V, :
o € Iy} and hence Y is S-closed. |

Definition 5.10. A topological space (X, 7) is said to be

(i) Ultra normal[5]if each pair of non-empty disjoint closed sets can be separated by
disjoint clopen sets.

(i1)) Ag-normal if each pair of non-empty disjoint closed sets can be separated by
disjoint A,-open sets.

Theorem 5.11. If f : (X,7) — (Y,0)is a (Ag,s)-continuous closed injection and Y is
Ultra normal, then X is A,-normal.

Proof. LetE and F be disjoint closed subsets of X. Since fis closed and injective, f(E) and
f(F) are disjoint closed sets in Y. Since Y is Ultra normal, there exist disjoint clopen sets
Uand Vof Ysuchthat f(E) C U and f(F) C V. Since fis (A,,s)-continuous, f_1 )
and f_l(V) are disjoint A,-open sets in X such that £ C f_l(U) and F C f_l(U)
which shows that X is A ,-normal. [ |
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