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In this paper, the Hermitian positive definite solutions of the matrix equation

X*+A'X "A=P is considered, where A is an Mx M nonsingular matrix
and P is an mxm Hermite positive definite matrix, S is a positive real
number, Nis a natural number. Necessary and sufficient conditions for the
existence of an Hermitian positive definite solution are derived, and a iterative
solution is provided.
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Introduction
We consider the matrix equation

XS+ A X "A=P (1.1)

where A is an Mmx M nonsingular matrix and P is an Mxm Hermite positive
definite matrix, S is a positive real number, Nis a natural number. We mainly discuss
the symmetric positive definite solutions of Eq. (1.1).

Solvability Conditions and Iterative Solution

We consider the following two polynomial equations

XSJrn - /lmin (P)Xn + /lmax (A* A) = O (21)

and

XM= (P)x"+A4

‘max 'min

(A'A)=0 (2.2)
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It is easy to verify that the necessary and sufficient condition for the existence of
the positive real root of Eq. (2.1) and Eq. (2.2) is

ﬂ“max (A* A) < ﬂ“min (P)ég*n - 5*8+n
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Thus, in this subsection we assume that A satisfies
AP

By (2.3) we know that Eq.(2.1) has two positive real roots «, < f,, Eq.(2.2) has
two positive real roots a, < £, .It is easy to prove that,

n+s n " s
< (—)° (2.3)
n+s” n+s

O<a fa,<é& <P 2P,

Theorem 2.1: Suppose that A and P satisfies(2.3), X is the solution of Eq.(1.1).Then
algﬂmin(x)SaZ or ﬁlglmin(X)SﬂZ
alglmax(X)SaZ or ﬂlglmax(x)sﬂ2'

Proof: Suppose X is the solution of Eq.(1.1), then X°+ A’ X "A=P, by Wyle
inequation we know that,

(P_ A*XinA) 2 //i’min(P)_/lmax(A*XinA) Z /lmin(P)_ ﬂmaX(A A)

2 (X)=4 .
min( ) //L:m(x)

‘min
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ﬂimoo=zmax(P—A*x-"A>szmax(P)—zmm(A*x—nA)zzmax<P>—ﬁ“?(—w

So, )= F o Amn () =2 g, < 7, (X) < B,

On the other hand, X°*+ A'X "A=P,so X" = AP-X®)"A", then

£

AR AP-X) A X" A

Apin (P—=X%) A (P—X%)
thus //i’rrllin(x)/lmax(P_ X S) 2 /’f“min(AA*) /’f“rrllax(x)//i’min(P -X S) < //i’max(AA*)
by Wyle ineqution, we can obtain

A (P= X% < ﬂmax(P)—/Iim (X), A, (P=X*>4_ (P)- 4. (X)

SO’ /’Lmax (P)/’erlun (X) - /?,IEE(X) 2 /’f“min (AA*) b //i’min (P)//i’glax (x) - /121;8( (X) < /’f“max (AA*)

so, a, <A (X)Sp,, 4. (X)2p,or A (X)<¢a, .

max

Remark 2.1: Suppose that A and P satisfies(2.3), X is the solution of Eq.(1.1), there
are no solutions in [a, |, £,1].

Remark 2.2: Suppose that A and P satisfies(2.3), X is the solution of Eq.(1.1), then
X elal,a, JU[B], B TU{X =X |051 <AaP)<a,,p <. (PSS},

Theorem 2.2: Suppose that A and P satisfies(2.3), We define sequences as the
following,

A A l
XO =7/| E[azl’ﬂll]a Xk+1 :[A(P_st)*lA*]n, k=03132-~-

1
X, =yl €[0,a,17, X1 =[AP=XS) A", k=0,1,2...

5

the sequences satisfy X, < X, <---< X <. < X <X << X <4< X <X

\

then there is a maximal solution X and a minimal solution X,

X =limX,, X =limX,, .
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Proof: Let N =[AP-X*)"AT" @ =[a],051] then vX ed, P-X°>0.
min (AA* ) l

1

A
A h(X)=An P-XHTA >[—mint" "7 In = ¢, .
‘min ( ) mm[A( ) ] [/lmax(P)_als] a,
~ . A (AA) L
A h(X)=A" [AP=XS)TA 1< Zmaxt 777 n —
max ( ) max[ ( ) ] [/,lmin(P)_azs] 0{2
SO, h(q))CCD

S =

1
YX,Ye®,X>Y h(X)=[AP-X)"A]" >[AP-X)"AT"=h(Y) gt is to

h(X)

say, is monotone increasing.
1 * 1
A AS -1 A*1n ﬂ’max AA n " A
n(X,) =[AP— X, A <[ LA gy %
ﬁ‘min(P)_ys
1 * 1
s\ af 1 < Amin (AA) 0
h(X,)=[AP-X,>)" A" <[ —_|]" <yl =X
(vo) [A( V0 ) ] [AmaX(P)_]/S ] 7; Vo

\2

It is easy to verify the sequences {X,}, {X,} are convergent,

\4

X =limX,, X =limX,,.

Collary. Suppose that A and P satisfies(2.3), X is the solution of Eq.(1.1).If
X ela,l,a,l]}, then

X<X<X.
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