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Abstract

We prove that recent results of Chen and Xing [ Int. J. Comtemp. Math.
Science, Vol. 2, 2007, no.23, 1121-1127 ] concerning the general system for
strongly accretive nonlinear variational inequalities in g — uniformly smooth

Banach spaces based on the convergence of sunny nonexpansive retraction
projection methods can be extended to much more genera class of ¢—

strongly accretive mappings. The results presented in this paper extend and
improve the results of Chen and Xing (2007).
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Introduction
Projection methods have played a significant role in the numerical resolution of
variational inequalities in Hilbert spaces. And Verma [1] introduces the general two-
step model for projection methods, which reduces to the-step model applied in [2] and
then appliesit to the approximately in a Hilbert space setting.

It is the aim of this paper to improve the result of Chen and Xing [8] in q-

uniformly smooth Banach spaces. In order to overcome the difficulties caused by the
lack of projections, we will restrict our investigation in smooth Banach space because
in such a space, the fixed point set of a nonexpansive mapping is a sunny
nonexpansive retract (see definition in section 2). Since a sunny nonexpansive
retraction in terms of a duality mappings enjoys some of the nice properties that
projection in Hilbert space has, we are able to establish the main result in a smooth
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Banach space setting. Let X be area smooth Banach space with dual X *, we denote

by J the normalized duality mapping from X to 2* . It is well known that if X is
normalized duality by J. Let K be a nonempty closed convex subset of X and let
A:K — K be any mapping onK . We consider system of two nonlinear variational
inequality (abbreviated as SNV1) problems as follows: to find elements

X", y" e K such that
<pA(y*)+ X =y, j(x—x*)>20,Vx,ye K andfor p>0 (1.2

<77A(x*)+ y' =X, j(x— y)> >0,vx,ye K andfor >0 (1.2

The SNVI problem (1.1) and (1.2) is equivalent to the following sunny
nonexpansive retraction projection formulas

X" =B, [y* —pA(y*)] for p>0
y' =P [x* —nA(x*)] for >0

Where P, is the sunny nonexpansive retraction projection from X ontoK . Next
we consider two special cases of SNVI problem (1.1) and (1.2)
1. If n=0,then the SNVI problem (1.1) and (1.2) reduces to the following

nonlinear variational inequality (NV1) problem: to find an x" € K such that
<A(x* ) j(x - X' )> >0,VxeK (1.3)

2. If K isaclosed convex cone of X , then the SNVI problem (1.1) and (1.2) is
equivalent to the following system of nonlinear complementarity (SNC)

problemstofind x*,y" € K such that
A(x*), A(y*)e K" and
pA(y* )+ X -y, j(x* )> =0, for p>0 (1.4

<
<77A(x* )+ y =X, j(y* )> =0, forn>0 (1.5)

Where K" isthe polar coneto K defined by
K*={f e X:(f,j(x)>0vxeK].

Preliminaries
Throughout this paper, we always let X be areal Banach space with the dual space

X*. The generalized duality mappings
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J,(x): X - 2% isdefined by
3,00=1F e X" (0 1) = | | £ = x|} vx e X

Where q>1 isaconstant. In particular, J, = Jis the usua normalized duality
mapping. It is known that J, =[x|"*J for al xe X, and J,(x) is single-valued if

X* is dtrictly convex. In the sequel, unless otherwise specified, we always suppose
that X isarea Banach space such that J, is single-valued. We denote the single-

vaued generalized duality by j,. If X isaHilbert space, then J becomes the identity

mapping of X .
The modules of smoothness of X isthefunction px: [0,+c0) — [0,+c0) defined by

ﬂmjzam{%mx+ﬂpmx_ﬂp_lquﬁmﬂpzanx,yex}¢>o

If there exists constant ¢> 0 and areal number 1< g < oo, such that px(t) < ct?,
then X is said to be uniformly smooth. A Banach space X is caled uniformly
smoothiif lim px(t)/t = 0.

In the sequel, we will give some definitions.

Definition 2.1. Let A: X — X be a single-valued operation, then the operator A is
said to be

Accretiveif (Ax— Ay, j,(x-y)) 2 0,vx y e X

Strictly Accretiveif (Ax— Ay, j,(x—y)) 2 0,vx,y e X and theinequality holds if
only y=x;

Strongly Accretive if there existsa constant L > 0, such that

<Ax— Ay, jq(x- y)> > L|x-y|", vx, y e X

¢ —Strongly Accretive if there exists drictly increasing function ¢:
[0,00) — [0,00) with ¢(0) = Osuch that

<Ax— Ay, j(x- y)> > g|x— yf|x- ¥, ¥x, y € X

oyl
v rEvE

%Nv—ﬁ“=dnﬂv—wP

where
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_ #x—|
ekt v PRy

Lipschitz continuous if there existsa constant L > 0, such that

j c[01),vx,yeE

|Ax— Ay||= L|jx-y|", vx, y e X

Definition 2.2. Let C and K be nonempty subset of a Banach space X such that C
is nonempty closed convex and K < C, thenamapping B, : C — Kiscaled

1. Retraction from C onto K if B x=x,Vxe K.
2. sunny if P (P.x+t(x—P.x))=P.x,VxeC.

Whenever (P.x+t(x—P,x))eC and t>0.

3. A sunny nonexpansive retraction if B, issunny, nonexpansive and a retraction
of C onto K. Thefollowing lemmaiswell known (see reference [3,4]).

Lemma 2.1. Let C be a nonempty convert subset of a smooth Banach space X,
KcC, J: X —> X" the (normalized) duality mapping of X, and B,:C—>K a
retraction. Then the following are equivalent:

1 (x-Bx j(y-Rx)<0vxeCand yeK;

2. P, isboth sunny and nonexpansive.

In order to prove our main result, we need the following lemmas.

Lemma 2.2 ([5]) Let {4, }beasequencein [0,1)such that lim 4, = 0 then

i/ln =0 & f[(l—zn)zo.
n=1

n=1

Lemma 2.3. ([6)] let X be area uniformly smooth Banach space. Then, X is q-
uniformly smooth if and only if there exist aconstant ¢ > 0, such that for all x,y e X

ey <7 + a5 () + eyl

Algorithms

In this section, we deal with an introduction in general two-step models for sunny
nonexpansive retraction projection and its special forms that can be applied to the
convergence analysis for sunny nonexpansive retraction projection in the context of
the approximation solvability of the SNVI problem (1.1) and (1.2).
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Algorithm 3.1 For arbitrarily chosen initial pointsx,,y, € K, computing the
sequences {x },{y, }such that

X1 = (1_ o, )Xn +a, I:)k [yn - pA(yn )]
Yo = (1_ﬂn)xn +ﬂnpk[xn _UA(Xn)]

Where B, is the sunny nonexpansive mapping of X ontoK, p and 7 >0
constants and {e, },{/3, } are sequencesin [0.1].
For {f,}=1inagorithm 3.1, we get

Algorithm 3.2 For arbitrary chosen initia pointsx,, y, € K, computing the sequences

X1 = (1_ o, )Xn +a, I:)k [yn - pA(yn )]
Yo = IBn I:)k [Xn - UA(Xn )]

where B, is the sunny nonexpansive mapping of X ontoK, o and n >0 constants
and {a, } isasequencein [0.1].
For n =0 inalgorithm 3.1, we get

Algorithm 3.3 For an arbitrary chosen initial pointx, € K, computing the sequence
{x,} such that

Xpg = (1_ a, )Xn ta, I:)k [Xn - pA(Xn )]

Where P, isthe sunny nonexpansive mapping of X ontoK, p >0 is a constant
and {a, } isasequencein [0.1].

Main Result

We now present on Algorithm 3.1, the approximation-solvability of the SNVI
problem (1.1) and (1.2) involving a mapping A:K — Xwhich is ¢—strongly
accretive and Lipschits continuous with a function r(x,y) and constantL,
respectively, in a q— uniformly smooth Banach space setting.

Theorem 4.1 Let X be a real - uniformly Smooth Banach Spaces, and K be a
nonempty closed convex subset of X and T: K— K be ¢ — strongly accretiveand L —
Lipschitz continuous mapping. Pk : X— K sunny nonexpansive retraction mapping.
Suppose that x",y" € K from a solution of the SNVI problem (1.1) and (1.2), the
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sequence  {x,},{y,] ae generated by the Algorithm 3.1 and «,,f, €[0]],
ianﬁn = . Then, sequences{x, },{y,}, respectively, converges to x’and y"* for
n=0

0< prt XY o as Tk YA

cL? cL?

Proof Since x* and y* form a solution to the SNVI problem (1.1) and (1.2), it
follows that

x* = R [y*—pA(y*)]

y* = B[x* —pA(x*)]

Applying Algorithm 3.1, we have

[Xoa =X = 1= @ )%, + @ Relyn = ALY, )] = (L=, )X* +a, Ry * —pA(y*)]

< (1=a, )%, = x*|+ @, R Ly, - pAly, )= Rly* —pAly*)]

<@-a, %0 = x*|+ a@nllyn - v* —p[Aly,) - pA(y*)] (4.1)

Since A is ¢ — Strongly accretive and L — Lipschitz continuous, we have

<[y, -y -ap

Yo V*=p[ A(Ya) - pA(Y*) ]
(A = PA(Y*), ig (Yo = ¥*)) + o [A(Ya) - PA(Y*)[
<ya = y*|" = aor(ya. y*)lya =y +co "Ly, - v

= [1- gor(y,. y*)+ e ]y, -y

Since D = supﬂA(xn)— X*H+‘A(yn)— XH ‘n> 0}+on + XH

Then by induction, we obtain that

X,~X'|<D,vn>0 and let liminf

[x,-x|=6=0,vn=0, then there exists a positive number N, such that

xn—x*Hzé,Vnzo.
2

Hence, it follows from (4.3) that

Ya—y*=p[ A(¥.)-pA(y*) ]|’

Yo Y|
)

4

< 1-
Yo=Y [+

qo+col |||y, - v*[°

(1+ 10
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Yo = Y*—p[ AY,) - PA(Y*) ]
5) ’

¢ N

<|1- 2
(1+ ¢(D)+

) ao+co'l | |lya— ¥ (4.2

Substitute (4.2) into (4.1) to obtain
[ =¥ < (L= ) [ %, = x|+ 2,

S X
1 (p(ZJ aa * 4
—(1+¢(D)+D)qp+<:p A (4.3

X1 — X*” < (l_ a, X|Xn - X*” + anenyn - y*”

= (1— an)”Xn - x*|| + an”yn - y*|| (4.9
where
¢(5j %
— _—2 qp g
0<6=|1 (1+¢( )+D)Qp+Cp L <1

[vo = yH| =0 B8.)%, + B.R[x, —7AX, )] - (A- @, )x* +ar, R x* - pA(x*)]

< (1= B %o = x¥[+ BalRlx, = A, )] - R [x* —pA(x*)]

< (@ B o = x4+ Bollx, = x* = Alx, ) - Alx)] (4.6)
Since A is ¢ — Strongly accretive and L — Lipschitz continuous, we have

% =x*n[ A(x,) - A(x*)]
(ACG) = A*), g (%, =x*))+er | A% ) = A

<%, = x*|* = anz(x,, x*)x, = x*|* +cnLYx, — x*|°

<%, ~x*[" ~an
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¢

X, =X |+

X, — XH

)qry +cniLe ]”xn —x*|"

i {1 -

X, +X|

Thus,

[, = x*=n[ A(x,) - A(x*)]

‘q

H) Q7 + Cﬂqu]”Xn o X*”q

) o]

an+cnilt| |x,—x¥ (47

olx x|

<|{1-
(1ol =]+, +x

) T S IS)]

Substitute (4.7) into (4.6) to obtain

{3) ’
2
||yn - X*” < (1— ﬂn X|Xn — X*” + ﬂn 1—WD)+D)qT7 + C?]qu ||Xn — X*”

Iy, = x*| < @= B, )%, = x*| + Boo] %, — x| (4.8)
where

5 %
{3)
O<o=|1- qn+cpil?| <1

(1+¢(D)+ D)

Substitute (4.8) into (4.4) to obtain

[y = < (@ fxy = x|+ et [0 8, ), =]+ o, =]
= [1-a, %, = x*|+ &, (1= B, )%, = X*| + e, Boo]x, — X¥
=[1-a,)+a,1-B,)+ a,Buo]x, x|

=[0-a,)+ o, (1~ B, )+ anfro] %, - %7
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= [1— a,to, — anﬂn + ananUHXn a X*"

N —

<

n

[8-0-0)an ] x| (49)

n

Since 0<o <1 and ) a,8, =, thusby Lemma2.3,
n=1

o0

H[l— @-o)a,p,]=0

n=1

Hence, the sequence {x, | convergesto x" by (4.9) and {y, } convergesto y" by

(4.6)

References

[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]

R. U. Verma, General convergence anaysis for two-step projection methods
and applications to variational problems, Appl. Math. Lett., 18(2005) 1286-
1292.

R. U. Verma, Projection methods, algorithms and anew system of nonlinear
variational inequalities, Comput. Math. Appl., 41(2001) 1025-1031.

H. K. XU, Viscosity approximation methods for nonexpansive mappings, J.
Math. Anal. Appl., 298(2004)279-291.

Jong Soo Jung, Iterative approaches to common fixed points of nonexpansive
mappings in Banach spaces, J. Math. Anal. Appl., 302(2005)509-520.

H. Bauschke, The approximation fixed points of compositions of nonexpansive
mappings in Hilbert space, J. Math. Anal. Appl. 202(1996)150-159.

H. K. XU, Inequaity in Banach spaces with applications, nonlinear Anal.
16(1991), 1127-1138.

R. U. Verma, A class of Projection-contraction methods applied to monotone
variational inequalities, Appl. Math. Lett. 13(2000) 55-62.

Ruddong Chen and Linfang Xing, General System for Strongly Accretive
Nonlinear Variational Inequalities in q— Uniformly Smooth Banach spaces,

Int. J. Contemp. Math. Sciences 23(2007) 1121-1127.








