System of Intuitionistic Fuzzy Relational Equations

A.R. Meenakshi and T. Gandhimathi

Department of Mathematics, Karpagam University, India E-mail: arm_meenakshi@yahoo.co.in, gandhimahes@rediffmail.com

Abstract

In this paper, we represent an intuitionistic fuzzy matrix as the Cartesian product representation of its membership and non-membership matrices. By using this representation, we introduce the concept of regularity for block IFMs and the consistency of intuitionistic fuzzy relational equations are discussed.

Keywords: Block fuzzy matrix, Block intuitionistic fuzzy matrix, Schur complement.

Introduction

We deal with fuzzy matrices that is, matrices over the fuzzy algebra F^{M} and F^{N} with support [0,1] and fuzzy operations {+,.} defined as $a + b = \max \{a, b\}$, $a.b = \min\{a,b\}$ for all $a,b \in F^{M}$ and $a + b = \min\{a, b\}$, $a.b = \max\{a, b\}$ for all $a, b \in F^{N}$. Let F_{mxn}^{M} be the set of all mxn Fuzzy matrices over F. A matrix $A \in F_{mxn}^{M}$ is said to be regular if there exists $X \in F_{nxm}^{M}$ such that AXA = A, X is called a generalized inverse (g-inverse) of A. In [2], Kim and Roush have developed the theory of fuzzy matrices, under max min composition analogous to that of Boolean matrices. Cho [1] has discussed the consistency of fuzzy matrix equations, if A is regular with a ginverse X, then b.X is a solution of x A=b. Further every invertible matrix is regular. For more details on fuzzy matrices one may refer [4].Regularity of block fuzzy matrices and the consistency of a fuzzy relational equation with coefficient matrix is a block fuzzy matrix are discussed in[3]. The concept of intuitionistic fuzzy matrices (IFMs) as a generalization of fuzzy matrix was studied and developed by Madhumangal Pal et.al.[6].In our earlier work, we have studied on regularity of IFM[5].

In this paper, we discuss the consistency of Intuitionistic fuzzy relational equations as a generalization of fuzzy relational equations discussed in [4]. In section 2, we present the basic definitions and required results on IFMs. In section 3, by

introducing the concept of schur complements for a block IFM and discussed the consistency of intuitionistic fuzzy relational equations of the form xM=b, where M is a block intuitionistic fuzzy matrix and b is an intuitionistic fuzzy vector.

Preliminaries

Let $(IF)_{mxn}$ be the set of all intuitionistic fuzzy matrices of order mxn. Let $(IF)_{mxn}$ be the set of all intuitionistic fuzzy matrices of order mxn. First we shall represent A $\in (IF)_{mxn}$ as Cartesian product of fuzzy matrices. The Cartesian product of any two matrices $A = (a_{ij})_{mxn}$ and $B = (b_{ij})_{mxn}$, denoted as $\langle A, B \rangle$ is defined as the matrix whose ijth entry is the ordered pair $\langle A, B \rangle = (\langle a_{ij}, b_{ij} \rangle)$. For $A = (a_{ij})_{mxn} = (\langle a_{ij\mu}, a_{ij\nu} \rangle)$ $\in (IF)_{mxn}$. We define $A_{\mu} = (a_{ij\mu}) \in F_{mxn}^{M}$ as the membership part of A and $A_{\nu} = (a_{ij\nu}) \in F_{mxn}^{N}$ as the non membership part of A. Thus A is the Cartesian product of A_{μ} and A_{ν} written as $A = \langle A_{\mu}, A_{\nu} \rangle$ with $A_{\mu} \in F_{mxn}^{M}$, $A_{\nu} \in F_{mxn}^{N}$.

Here we shall follow the matrix operations on intuitionistic fuzzy matrices as defined in our earlier work [5].

For
$$A, B \in (IF)_{mxn}$$
, if $A = \langle A_{\mu}, A_{\nu} \rangle$ and $B = \langle B_{\mu}, B_{\nu} \rangle$, then
(2.1) $A + B = \langle A_{\mu} + B_{\mu}, A_{\nu} + B_{\nu} \rangle$

For $A \in (IF)_{mxp}$, $B \in (IF)_{pxn}$ if $A = \langle A_{\mu}, A_{\nu} \rangle$ and $B = \langle B_{\mu}, B_{\nu} \rangle$, then (2.2) $AB = \langle A_{\mu}.B_{\mu}, A_{\nu}.B_{\nu} \rangle$

 A_{μ} . B_{μ} is the max min product in F_{mxn}^{M} , A_{ν} . B_{ν} is the min max product in F_{mxn}^{N} .

For $A \in (IF)_{mxn}$, R(A) (C(A)) be the space generated by the rows (columns) of A. Let us define the order relation on (IF)_{mxn} as, (2.3) $A \leq B \Leftrightarrow A_{\mu} \leq B_{\mu}$ and $A_{\nu} \geq B_{\nu} \Leftrightarrow A + B = B$.

In the sequel, we shall make use of the following results proved in our earlier work [5].

Lemma 2.1[5]:For $A, B \in (IF)_{mxn}$, $R(B) \subseteq R(A) \Leftrightarrow B=YA$ for some $Y \in (IF)_n$, $C(B) \subseteq C(A) \Leftrightarrow B = AX$ for some $X \in (IF)_n$.

Lemma 2.2[5]: Let $A \in (IF)_{mxn}$ be of the form $A = \langle A_{\mu}, A_{\nu} \rangle$. Then A is regular $\Leftrightarrow A_{\mu}$ is regular in F_{mxn}^{M} under max min composition and A_{ν} is regular in F_{mxn}^{N} under min

max composition.

Lemma 2.3[5]: If $A \in (IF)_{mxn}$ is of the form $A = \langle A_{\mu}, A_{\nu} \rangle$, then (i) $R(A) = \langle R(A_{\mu}), R(A_{\nu}) \rangle$ and (ii) $C(A) = \langle C(A_{\mu}), C(A_{\nu}) \rangle$.

Consistency of xM=b, where M is Block Intuitionistic Fuzzy Matrix In this section, we are concerned with a block intuitionistic fuzzy matrix of the form

$$\mathbf{M} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \tag{3.1}$$

with the diagonal blocks A and D are regular IFMs. With respect to this partitioning a schur complement of A in M is a matrix of the form $M/A = D - CA^{-}B$, Where A⁻ is some g-inverse of A. By M/A is a intuitionistic fuzzy matrix, we mean that CA⁻B is invariant and $D \ge CA^{-}B$. Therefore

M/A is a fuzzy matrix \Leftrightarrow CA⁻B is invariant and D= D + CA⁻B (3.2)

Similarly,

$$M/D = A-BD^{-}C$$
 is an IFM $\Leftrightarrow BD^{-}C$ is invariant and $A=A+BD^{-}C$ (3.3)

Let M of the form (3.1) can be expressed as M=<M_{\mu}, M_{\nu}>, where

 $\mathbf{M}_{\mu} = \begin{pmatrix} A_{\mu} & B_{\mu} \\ C_{\mu} & D_{\mu} \end{pmatrix} \text{ and } \mathbf{M}_{\nu} = \begin{pmatrix} A_{\nu} & B_{\nu} \\ C_{\nu} & D_{\nu} \end{pmatrix}$

are block intuitionistic fuzzy matrices.

Let $A = \langle A_{\mu}, A_{\nu} \rangle$, $B = \langle B_{\mu}, B_{\nu} \rangle$, $C = \langle C_{\mu}, C_{\nu} \rangle$ and $D = \langle D_{\mu}, D_{\nu} \rangle$. Since A and D are regular, by Lemma (2.2) $A_{\mu}, A_{\nu}, D_{\mu}, D_{\nu}$ are all regular IFMs.

Lemma 3.1

For IFMs, A,B,C if A is regular. $R(C) \subseteq R(A)$ and $C(B) \subseteq C(A)$, then CA⁻B is invariant for all choices of g-inverses of A.

Proof

Since $R(C) \subseteq R(A)$ and $C(B) \subseteq C(A)$, by lemma (2.1), C = YA and B = AX for some $X, Y \in (IF)_n$.

Now CA⁻B = (YA) A⁻(AX) = Y (AA⁻A)X (Since A is regular) = YAX

Thus CA⁻B is invariant for all choices of g-inverses of A.

Lemma 3.2

For IFMs A, B,C,if A is regular then the following are equivalent: $R(C) \subseteq R(A)$ $R(C_{\mu}) \subseteq R(A_{\mu}), R(C_{\nu}) \subseteq R(A_{\nu})$ $C = CA^{-}A$ for all A⁻ of A. $C_{\mu} = C_{\mu}A^{-}_{\mu}A_{\mu}$ for all A⁻_{\mu} of A_{\mu} and $C_{\nu} = C_{\nu} A^{-}_{\nu}A_{\nu}$ for all A⁻_{\nu} of A_{\nu}.

Proof

Let $A = \langle A_{\mu}, A_{\nu} \rangle$, $B = \langle B_{\mu}, B_{\nu} \rangle$ and $C = \langle C_{\mu}, C_{\nu} \rangle$. (i) \Leftrightarrow (ii): Since $R(C) = \langle R(C_{\mu}), R(A_{\nu}) \rangle$ and $R(A) = \langle R(A_{\mu}), R(A_{\nu}) \rangle$. $R(C) \subseteq R(A) \Leftrightarrow R(C_{\mu}) \subseteq R(A_{\mu})$ and $R(C_{\nu}) \subseteq R(A_{\nu})$. Thus (i) \Leftrightarrow (ii) holds.

(ii) \Leftrightarrow (iv): Since A is regular, by lemma (2.2), A_{μ} and A_{ν} are regular.

$$\begin{split} R(C_{\mu}) &\subseteq R(A_{\mu}) \Leftrightarrow C_{\mu} = Y_{\mu} A_{\mu} & (By \text{ lemma (2.1)}) \\ \Leftrightarrow C_{\mu} &= Y_{\mu} (A_{\mu}A^{-}_{\mu}A_{\mu}) \\ \Leftrightarrow C_{\mu} &= C_{\mu}A^{-}_{\mu}A_{\mu} & (By \text{ taking } Y_{\mu} = C_{\mu}A^{-}_{\mu}) \end{split}$$

In the same manner $R(C_v) \subseteq R(A_v) \Leftrightarrow C_v = C_v A^- A_v$. Thus (ii) \Leftrightarrow (iv) holds.

(ii) \Leftrightarrow (iii):

Since A is regular, by lemma (2.2), A_{μ} , A_{ν} are regular. $R(C_{\mu}) \subseteq R(A_{\mu})$ and $R(C_{\nu}) \subseteq R(A_{\nu})$ $\Leftrightarrow C_{\mu} = Y_{\mu}A_{\mu}$ and $C_{\nu} = Y_{\nu}A_{\nu}$ (By lemma (2.1)) $\Leftrightarrow C_{\mu} = Y_{\mu}A_{\mu}A^{-}_{\mu}A_{\mu}$ and $C_{\nu} = C_{\nu}A_{\nu}A^{-}_{\nu}A_{\nu}$ $\Leftrightarrow C_{\mu} = Y_{\mu}A^{-}_{\mu}A_{\mu}$ and $C_{\nu} = C_{\nu}A^{-}_{\nu}A_{\nu}$ (by taking $Y = CA^{-}$) $\Leftrightarrow C = CA^{-}A$. Thus (ii) \Leftrightarrow (iii) holds.

Lemma 3.3

For IFMs A,B,C if A is regular then the following are equivalent. $C(B) \subseteq C(A)$ $C(B_{\mu}) \subseteq C(A_{\mu}), C(B_{\nu}) \subseteq C(A_{\nu}),$ $B=AA^{B} \text{ for all } A^{-} \text{ of } A.$ $B_{\mu} = A_{\mu} A_{\mu}^{-} B_{\mu} \text{ for all } A_{\mu}^{-} \text{ of } A_{\mu} \text{ and}$ $B_{\nu} = A_{\nu} A_{\nu}^{-} B_{\nu} \text{ for all } A_{\nu}^{-} \text{ of } A_{\nu}$

Proof

Since $C(B) = R(B^T)$, A is regular $\Leftrightarrow A^T$ is regular and $A^T \in A\{1\} \Leftrightarrow (A^T)^T \in A^T\{1\}$. Lemma (3.3) follows from Lemma (3.2).

Theorem 3.4

For IFMs A, B, C if A is regular then the following are equivalent. $R(C) \subseteq R(A)$ and $C(B) \subseteq C(A)$ $C = CA^{-}A$ and $B = AA^{-}B$ for all A^{-} of A

52

CA⁻B is invariant, $C = C + CA^{-}A$ and $B = B + AA^{-}B$.

Proof

 \Leftrightarrow (iii): This is precisely the equivalence of (i) and (iii) of lemma (3.2) and lemma (3.3).

(ii) \Rightarrow (iii): This follows from lemma(3.1) and (2.3), we get $C = CA^{-}A$ and $B = AA^{-}B$ $\Rightarrow C = C + CA^{-}A$ and $B = B + AA^{-}B$

For any $A^{-} \in A\{1\}, C A^{-}B = (CXA) A^{-} (AYB)$, for some X, $Y \in A\{1\}$ = C X (AA^{-}A) YB = CXAYB = C(XAY) B = CZB, Where Z = XAY $\in A\{1\}$.

Thus CA⁻B is invariant

(iii) \Rightarrow (ii): B = B+AA⁻B and C = C+ CA⁻A \Rightarrow B \geq AA⁻B and C \geq CA⁻A. Suppose C > CA⁻A, then CA⁻B > C(A⁻AA⁻) B = CXB. Where X = A⁻AA⁻ is a g-inverse of A. This contradicts the invariance of C. Hence C = CA⁻A. In the same manner, we can show that B = AA⁻B. Thus (ii) holds. Here, we shall discuss the consistency of the intuitionistic fuzzy matrix equation x M = b. (A B)

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, x = [y z] and b = [c d] be partitions of x and b respectively confirmity with that of M

in confirmity with that of M.

Theorem 3.5

Let M = $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with A and D are regular, M/A and M/D exists. R(C) \subseteq R(A)

and R(B) \subseteq R(D). Then *x* M = b is solvable if and only if y.A = c and *z*. D = d are solvable c \geq dD⁻C and d \geq c A⁻B.

Proof

Suppose x M = b is solvable and $\alpha = [\beta \gamma]$ is a solution. Then we get $\beta A + \gamma C = c$ and $\beta B + \gamma D = d$ (3.4)

Since $R(C) \subseteq R(A)$ and $R(B) \subseteq R(D)$, by theorem (3.4), $C = CA^{-}A$ and $B = BD^{-}D$. Substituting for C and B in (3.4) we get $\beta A + \gamma CA^{-}A = c$ and $\beta BD^{-}D + \gamma D = d$ $\Rightarrow (\beta + \gamma CA^{-}A)A = c$ and $(\beta BD^{-} + \gamma)D = d$. Thus y.A = c, and z.D = d are solvable. Since A and D are regular, the solutions will be of the form y= cA⁻ and $z = dD^{-}$ Hence $cA^{-} = \beta + \gamma' CA^{-}$ and $dD^{-} = \beta BD^{-} + \gamma'$ $\Rightarrow cA^{-}B = \beta B + \gamma' CA^{-}B$ and $dD^{-}C = \beta BD^{-}C + \gamma C$ (3.5)

Since M/A and M/D exist, by (3.2) A+ BD⁻C = A and D+CA⁻B = D. Substituting for A and D in (3.4) we get, $c = \beta A + \gamma C = \beta (A+BD^{-}C) + \gamma C = \beta A + \beta BD^{-}C + \gamma C$ (3..6) $d = \beta B + \gamma D = \beta B + \gamma (D+CA^{-}B) = \beta B + \gamma D + \gamma CA^{-}B$ (3.7)

Substituting (3.5) in (3.6) and (3.7), We get, $c = \beta A + dD^{-}C$ $d = \gamma D + CA^{-}B$.

By intuitionistic fuzzy addition it follows that $C \ge dD^{-}C$ and $d \ge CA^{-}B$ as required.

Conversely, Suppose y.A = c and z.C =d are solvable, then y = cA⁻ and z=dC⁻. Hence cA⁻A = y.A = c and d C⁻C = z.C = d. From the given conditions, c \ge dD⁻C and d \ge cA⁻B, We get c + dD⁻C = c and d + cA⁻B = d Now, [cA⁻ dD⁻] $\begin{pmatrix} A & B \\ C & D \end{pmatrix} = [cA⁻A + dD⁻C, cA⁻B+dD⁻D]$ = [c+dD⁻C, cA⁻B+d] = [c,d]

Thus *x*.M=b is solvable. Hence the proof.

Remark 3.6

In particular, for B = 0 the above theorem reduces to the following

Corollary 3.7

For the matrix $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ such that $R(C) \subseteq R(A)$ the blocks A and D are regular IFMs, the following statements are equivalent: x.M = b is solvable y.A = c, z.D = d are solvable and c \geq dD⁻C.

Proof

(i)
$$\Rightarrow$$
 (ii): Suppose *x*.M = b is solvable, let $\alpha = [\beta \gamma]$ be a solution. Then we get,
 $\beta .A + \gamma C = c$ and $\gamma D = d$. (3.8)

54

Since $R(C) \subseteq R(A)$, by theorem (3.4), $C = CA^{-}A$. Substituting C in (3.8) we get, $\beta A + \gamma CA^{-}A = c$ and $\gamma D = d$ $\Rightarrow (\beta + \gamma CA^{-})A = c$ and $\gamma D = d$

Therefore y.A = c and z.D = d are both solvable with $y = \beta + \gamma CA^{-}$ is a solution of y.A = c and z= γ is a solution of z.D=d. Since D is regular, $\gamma = dD^{-}$ is a solution of z.D = d. Now $\gamma C = dD^{-}C$. From $\beta A + \gamma C = c$ by addition property we get, $c \ge \gamma C = dD^{-}C$. Hence (i) \Rightarrow (ii).

(ii) \Rightarrow (i): Suppose y.A = C and z.D = d are solvable, since both A and D are regular IFMs y= cA⁻ and z = dD⁻ are respectively the solutions of the equation y.A=c and z.D=d. Hence cA⁻A=c and dD⁻D = d. By addition property, c \ge dD⁻C implies c + dD⁻C = c

$$\begin{bmatrix} cA^{-} dD^{-} \end{bmatrix} \begin{pmatrix} A & O \\ C & D \end{pmatrix} = \begin{bmatrix} cA^{-}A + dD^{-}C & dD^{-}D \end{bmatrix}$$
$$= \begin{bmatrix} c+dD^{-}C & d \end{bmatrix}$$
$$= \begin{bmatrix} c & d \end{bmatrix}$$
$$= b.$$

Thus $[cA^{-}dD^{-}]$ is a solution of the equation x.M = b. Hence x.M = b is solvable.

References

- [1] H.H.Cho, Regular fuzzy matrices and fuzzy equations, Fuzzy Sets and Systems, 105(1999), 445 451.
- [2] K.H.Kim and F.W.Roush, Generalised fuzzy matrices, Fuzzy sets and Systems. 4 (1980), 293 315.
- [3] AR.Meenakshi, On Regularity of block fuzzy matrices, Int.J.Fuzzy Math., 12(2),(2004), 439-450.
- [4] AR.Meenakshi, Fuzzy matrices: Theory and its applications, MJP Publishers, Chennai 2008.
- [5] AR.Meenakshi and T.Gandhimathi, On Regular intuitionistic Fuzzy matrices, Int.J. of Fuzzy Math., Vol. 19, No. 2, 2011.
- [6] M.Pal, S.Khan and A.K.Shyamal, Intuitionistic fuzzy matrices, Notes on intuitionistic fuzzy sets 8(2), 2002, 51-62.