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Abstract 
 

Let G = (V, E) be a simple connected graph with p vertices and q edges. If 
G1,G2,…,Gn are connected edge disjoint subgraphs of G with 
E(G)=E(G1)׫E(G2)׫…׫E(Gn), then (G1, G2, …, Gn) is said to be a 
decomposition of G. A decomposition (G1, G2, …, Gn) of G is said to be 
continuous monotonic decomposition(CMD) if each Gi is connected and 
|E(Gi)|=i, for every i = 1, 2, 3, …,n. In this paper, we introduced the concept 
arithmetic odd Decomposition. A decomposition (G1, G2, …, Gn) of G is said 
to be a Arithmetic Decomposition or Linear decomposition if |E(Gi)| = a+(i-
1)d, for every i=1, 2, 3, …, n and a,d∈Z. Clearly [ ]dna
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q .That is, Arithmetic decomposition is a CMD. In 

this paper, we study the graphs when a=1 and d=2. If d=2, then q = n2. That is, 
the number of edges of G is a perfect square. Also we obtained the bounds for 
n and diameter of Extended Lobster LE. 
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Introduction 
All basic terminologies from Graph Theory are used in this paper in the sense of 
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Harary [3]. By a graph we mean a finite, undirected graph without loops or multiple 
edges.  
 
Definition 1.1: Let G = (V, E) be a simple connected graph with p vertices and q 
edges. If G1, G2,…,Gn are connected edge disjoint subgraphs of G with E(G)=E(G1) 
 .E(Gn), then (G1, G2, …,Gn) is said to be a Decomposition of G׫… ׫ E (G2)׫

 
 

 
 

Figure (1): Decomposition (G1, G2, G3) of G. 
 
 
 N.Gnanadhas and J.Paulraj Joseph discussed on Continuous Monotonic 
Decomposition (CMD) of graphs [4] and [5]. E.Ebin Raja Merly and N.Gnanadhas 
discussed Linear Path Decomposition or arithmetic odd path decomposition of 
Lobster [1] and Linear star decomposition or arithmetic odd star decomposition of 
Lobster [2]. This paper deals with Arithmetic odd Decomposition for a very particular 
class of unicyclic graph namely Extended Lobster denoted by LE.  
 
Definition 1.2: A Decomposition (G1, G2, …, Gn) of G is said to be Continuous 
Monotonic Decomposition (CMD) if |E (Gi)|=i, for every i=1, 2, 3, …,n. Clearly 
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Figure (2): Continuous Monotonic Decomposition (G1, G2, G3, G4) of G 
 



Arithmetic ODD Decomposition of Extented Lobster 37 
 

 

Definition 1.3: A decomposition (G1, G2, …, Gn) of G is said to be an Arithmetic 
decomposition or Linear decomposition if |E(Gi)| = a+ (i-1) d, for every i=1, 2, 3…, n, 
and a, d∈Z. Clearly [ ]dna
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 If a=1 and d=1, then 
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q . That is, Arithmetic decomposition is a CMD. If 

a=1 and d = 2 then, q = n2. That is, the number of edges of G is a perfect square. Since 
the number of edges of G is a perfect square, q is the sum first n odd numbers 1, 3, 5, 
…, (2n-1). Thus we call the Arithmetic Decomposition with a = 1 and d = 2 as 
Arithmetic Odd Decomposition (AOD). Since the number of edges of each subgraph 
of G is odd, we denote the AOD as (G1, G3, G5, …, G(2n-1)). 
 
Example 1.4: For the graph G in figure (3), (G1, G3, G5, G7) is an AOD. 

 

 

 
 

Figure (3) 
 
 
Some definitions will be helpful here. 
 
Definition 1.5: Unicyclic graph is a connected graph containing exactly one cycle. 
 
Definition 1.6: An Arithmetic odd decomposition (G1, G3, G5, …, G2n-1) in which 
each Gi is a path Pi with i edges is said to be an Arithmetic odd Path Decomposition 
or simply odd path decomposition(OPD)  
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Definition 1.7: Caterpillar is a tree in which the removal of pendant vertices results in 
a path.  
 
Definition 1.8: Lobster is a tree in which the removal of pendant vertices results in a 
caterpillar. 
 
Definition 1.9: The underlying path ௟ܲ of a Lobster L is a path obtained by the 
removal of pendant vertices two times successively. 
 
 
ODD Path Decomposition of Extended Lobster 
Definition 2.1: Let L be a Lobster with n2-1 edges. Then the graph denoted by LE is 
obtained by adding an edge e to L that forms a unicyclic graph is called an Extended 
Lobster. 
 
Remark 2.2: 
Extended Lobster is a graph which is not a Lobster. Clearly LE has n2 edges. Hence LE 
admits AOD. 
 Let LE be the extended Lobster with q = n2. Then LE = L + e where L is the 
Lobster with underlying path ௟ܲ. 
 The unicycle in LE is Ck = Pk-1 ׫ P1, 3 ≤ k ≤ n2-1. 
 
Definition 2.3: If LE admits decomposition (P1, P3, P5, …, P(2n-1)), then the 
decomposition is called an Arithmetic Odd Path Decomposition (OPD) of LE. 
 
Remark 2.4: For OPD in LE, always we treat P1 as e. 
 
Remark 2.5: In this paper, we study the Extended Lobster LE with q= ݊2 and so the 
term Extended Lobster LE always means LE with q= ݊2. 
 Our main theorem can now be stated as follows: 
 
Theorem 2.6: If the extended Lobster LE admits OPD (P1, P3, P5, …, P(2n-1)), then 
√ ݈ ൅ 5 ൑ ݊ ൑ 2 ൅ √݈. 
 
Proof: Assume that LE admits OPD. Clearly diam (LE) ൒ ݈ ൅ 4. 

 

 
Figure (4) 
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Case (i): P1 and P3 can be obtained from LE without taking any edge from ௟ܲ. 
Then, for P5, we must have only one edge from ௟ܲ, for P7, we must have 3 edges from 

௟ܲ, for P9, we must have 5 edges from ௟ܲ, …, for P (2n-1), we must have [(2 ݊ -1)-4] 
edges from ௟ܲ. 
 Hence ݈ =1+3+5+…+ [(2i-1)-4] +…+ [(2 ݊ -1)-4] = (݊ -2)2 ⇒ ݊ = 2  √ ݈  
 
Case (ii) Each path P2i-1, i = 2, 3, 4, …, n has edges from ௟ܲ. 
Then, for P3, we must have one edge from ௟ܲ, for P5, we must have one edge from ௟ܲ, 
for P7, we must have three edges from ௟ܲ, for P9, we must have five edges from ௟ܲ  …, 
for P(2n-1),we must have [(2 ݊ -1)-4] edges from ௟ܲ.  
Thus ݈ =1+1+3+5+…+ [(2 ݊-1)-4] = ݊2- 4݊+ 5 ⇒ ݊ = 2  √ ݈ െ 1  
 
Case (iii): atleast one edge of each P (2i-1), i = 2, 3, 4, …, n must be in ௟ܲ.  
Then ݈ =1+1+3+5+…+ [(2 ݊-1)-4], which is same as case (ii). 
 
Case (iv): Let P(2r-1) and P(2s-1) be two paths in the decomposition with origin vr and vs 
respectively. 

 

 
 

Figure (5) 
 
 
 Then we have ݈ = 1+3+7+9+…+ (2n-1) = ݊2- 5 ⇒ ݊ =  √ ݈ ൅ 5.  
 Hence √ ݈ ൅ 5 ൑ ݊ ൑ 2 ൅ √݈ .  ▌ 
 
Remark 2.7: Let LE be an extended Lobster and ௟ܲ be the underlying path obtained 
from LE –e. Let N1 denotes the set of vertices in LE – e which are at a distance one 
from ௟ܲ. Let n1= |N1|. Let N2 denotes the set of pendant vertices of LE – e which are at 
a distance two from ௟ܲ. Let n2= |N2|. 
 
Theorem 2.8: Let LE be the Extended Lobster with underlying path ௟ܲ of length ݈ and 
݊ ൌ 2 ൅ √݈. If LE admits OPD (P1, P3, P5, …, P(2n-1)), then n2 = 2n-3. 
 
Proof: Suppose L admits OPD. Since ݊ ൌ 2 ൅ √݈, no edge of P1 and P3 must be in ௟ܲ. 
Thus P1 contributes 0 for n2, P3 contributes 1 for n2, P5 contributes atmost 2 for n2, P7 
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contributes atmost 2 for n2, …, P(2n-1) contributes atmost 2 for n2. 
 Thus n2 = 1+2(n-2) = 2n-3.  ▌ 
 
Example 2.9: We take LE with q=52. Consider LE – e Then n = 2 ൅ √݈ ֜ ݈=9. 

 
 
 

 
 

Figure (6) 
 
 
 Here the underlying path ௟ܲ of LE – e is v1v2v3v4v5v6v7v8v9v10. Clearly P1 = e = 
u7w8.From the Lobster LE – e, we can easily construct P3 as u4w4v7w8, since no edge 
of P3 must be in ௟ܲ. Also P5 is u1w1v1v2w2u2, P7 is u3w3v5v4v3v2w6u6 and P9 is 
u5w5v10v9v8v7v6v5w7u7.  
 Hence N2= {u1, u2, u3, u4, u5, u6, u7} and n2=7. 
 
Theorem 2.10: If LE be an extended Lobster with underlying path ௟ܲ of length ݈ and ݊ 
= √ ݈ ൅ 5. Then LE admits OPD (P1, P3, P5, …, P(2n-1)) if and only if LE –e is a path. 
 
Proof: Assume that LE admits OPD. To prove all the internal vertices of vertices of 
LE –e are of degree 2. Suppose not. Let u be an internal vertex of LE –e of degree > 2 
as shown in figure (7). 

 
 

 
 

Figure (7) 
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 Let e1 be an edge incident with u, which is not in LE –e. Then e1 is the first or the 
last edge of some path P (2k-1). Thus ݈ ൅ 4 = 1+3+5+7+ …+(2k-3)+(2k-1-1)+(2k+1)+ 
…+(2n-1). 
 ⇒ ݈ ൅ 5 = n2 -1 ⇒ n =  √ ݈ ൅ 6 which is a contradiction. 
 Hence LE –e is a path. The converse part is obvious, since LE has q= ݊2.  ▌ 
 
 
ODD Star Decomposition of Extended Lobster 
Definition 3.1: If LE admits decomposition (S1, S3, S5, …,S(2n-1)), then the 
decomposition is known as Arithmetic odd Star Decomposition or simply odd star 
decomposition(OSD). 
 
Remark 3.2: Let LE be the extended Lobster with q = n2. Then LE –e is a Lobster 
with the longest path P. 
 
Remark 3.3: For OSD in LE, always we treat S1 as e. 
 
Result 3.4: If LE admits OSD (S1, S3, S5, …, S(2n-1)), then diam (LE –e) ≤ 2n-2. 
 
Proof: diam (LE –e) ≤ diam (S3) + diam (S5) + diam (S7) + …+ diam (S (2n-1)) = 2n-2. 
 Hence diam (LE –e) ≤ 2n-2.  ▌ 
 Now we are ready to prove Theorem 3.5. 
 
Theorem 3.5: Let LE be an Extended Lobster with q = n2 and diam (LE –e) = 2n-2. If 
LE admits OSD (S1, S3, S5, …, S(2n-1)) with S1 = e if and only if  
 LE –e is a caterpillar with (n-1) non-adjacent junctions and  
 There is no junction – neighbour in LE. 
 
Proof: Suppose LE admits OSD. Since diam (LE –e) = 2n-2, the centres of S3, S5, …, 
S(2n-1) lie in P. Thus LE –e is a caterpillar. Since S1 is e and diam (LE –e) = 2n-2, there 
is exactly one non-support in between any two centres. Hence there are (n-1) non-
adjacent junctions in LE –e. 
 Next to prove there is no junction-neighbor in LE - e. Suppose there is atleast one 
junction – neighbor in LE – e. Let the junction – neighbor be ei = xiyj. Then there exist 
junction supports vi and vj such that d (vi, vj) 3. Therefore < E (LE – e) – E (S3 ∪ S5 ∪ 
… ∪ S2n-1) > = 2S1, which is a contradiction. Hence there is no junction – neighbor in 
LE – e. The converse part is obvious.  ▌ 
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