Arithmetic ODD Decomposition of Extended Lobster

¹E. Ebin Raja Merly and ²N. Gnanadhas

¹Department of Mathematics, Nesamony Memorial Christian College, Marthandam Kanyakumari District, Tamil Nadu, India. 629 165 E-mail: ebinmerly@gmail.com ²Former Principal, Nesamony Memorial Christian College, Marthandam Kanyakumari District, Tamil Nadu, India. 629 165 E-mail: n.gnanadhas@gmail.com

Abstract

Let G = (V, E) be a simple connected graph with p vertices and q edges. If $G_1, G_2, ..., G_n$ are connected edge disjoint subgraphs of G with $E(G)=E(G_1)\cup E(G_2)\cup ... \cup E(G_n)$, then $(G_1, G_2, ..., G_n)$ is said to be a decomposition of G. A decomposition $(G_1, G_2, ..., G_n)$ of G is said to be continuous monotonic decomposition(CMD) if each G_i is connected and $|E(G_i)|=i$, for every i = 1, 2, 3, ..., n. In this paper, we introduced the concept arithmetic odd Decomposition. A decomposition $(G_1, G_2, ..., G_n)$ of G is said to be a Arithmetic Decomposition or Linear decomposition if $|E(G_i)| = a+(i-1)d$, for every i=1, 2, 3, ..., n and $a,d \in Z$. Clearly $q = \frac{n}{2}[2a + (n-1)d]$. If a=1 and d=1, then $q = \frac{n(n+1)}{2}$. That is, Arithmetic decomposition is a CMD. In this paper, we are to be the same area to be the graph of d=2. If d=2, then $n = n^2$. That is

this paper, we study the graphs when a=1 and d=2. If d=2, then $q = n^2$. That is, the number of edges of G is a perfect square. Also we obtained the bounds for n and diameter of Extended Lobster L_E.

Keywords: Decomposition of Graph, Continuous Monotonic Decomposition, Arithmetic Decomposition or Linear Decomposition, Arithmetic Odd Path Decomposition (OPD), Arithmetic Odd Star Decomposition (OSD).

AMS Subject Classification: 05C99.

Introduction

All basic terminologies from Graph Theory are used in this paper in the sense of

Harary [3]. By a graph we mean a finite, undirected graph without loops or multiple edges.

Definition 1.1: Let G = (V, E) be a simple connected graph with p vertices and q edges. If $G_1, G_2, ..., G_n$ are connected edge disjoint subgraphs of G with $E(G)=E(G_1)$ UE $(G_2) \cup ... \cup E(G_n)$, then $(G_1, G_2, ..., G_n)$ is said to be a Decomposition of G.

Figure (1): Decomposition (G_1, G_2, G_3) of G.

N.Gnanadhas and J.Paulraj Joseph discussed on Continuous Monotonic Decomposition (CMD) of graphs [4] and [5]. E.Ebin Raja Merly and N.Gnanadhas discussed Linear Path Decomposition or arithmetic odd path decomposition of Lobster [1] and Linear star decomposition or arithmetic odd star decomposition of Lobster [2]. This paper deals with Arithmetic odd Decomposition for a very particular class of unicyclic graph namely Extended Lobster denoted by L_E.

Definition 1.2: A Decomposition $(G_1, G_2, ..., G_n)$ of G is said to be Continuous Monotonic Decomposition (CMD) if |E (G_i) |=i, for every i=1, 2, 3, ...,n. Clearly $q = \frac{n(n+1)}{2}$

Figure (2): Continuous Monotonic Decomposition (G₁, G₂, G₃, G₄) of G

36

Definition 1.3: A decomposition (G₁, G₂, ..., G_n) of G is said to be an Arithmetic decomposition or Linear decomposition if $|E(G_i)| = a + (i-1) d$, for every i=1, 2, 3..., n, and a, $d \in \mathbb{Z}$. Clearly $q = \frac{n}{2} [2a + (n-1)d]$

If a=1 and d=1, then $q = \frac{n(n+1)}{2}$. That is, Arithmetic decomposition is a CMD. If a=1 and d = 2 then, q = n². That is, the number of edges of G is a perfect square. Since the number of edges of G is a perfect square, q is the sum first n odd numbers 1, 3, 5, ..., (2n-1). Thus we call the Arithmetic Decomposition with a = 1 and d = 2 as Arithmetic Odd Decomposition (AOD). Since the number of edges of each subgraph of G is odd, we denote the AOD as (G₁, G₃, G₅, ..., G_(2n-1)).

Example 1.4: For the graph G in figure (3), (G_1, G_3, G_5, G_7) is an AOD.

Some definitions will be helpful here.

Definition 1.5: Unicyclic graph is a connected graph containing exactly one cycle.

Definition 1.6: An Arithmetic odd decomposition $(G_1, G_3, G_5, ..., G_{2n-1})$ in which each G_i is a path P_i with i edges is said to be an Arithmetic odd Path Decomposition or simply odd path decomposition(OPD)

Definition 1.7: Caterpillar is a tree in which the removal of pendant vertices results in a path.

Definition 1.8: Lobster is a tree in which the removal of pendant vertices results in a caterpillar.

Definition 1.9: The underlying path P_l of a Lobster L is a path obtained by the removal of pendant vertices two times successively.

ODD Path Decomposition of Extended Lobster

Definition 2.1: Let L be a Lobster with n^2 -1 edges. Then the graph denoted by L_E is obtained by adding an edge e to L that forms a unicyclic graph is called an Extended Lobster.

Remark 2.2:

Extended Lobster is a graph which is not a Lobster. Clearly L_E has n^2 edges. Hence L_E admits AOD.

Let L_E be the extended Lobster with $q = n^2$. Then $L_E = L + e$ where L is the Lobster with underlying path P_l .

The unicycle in L_E is $C_k = P_{k-1} \cup P_1$, $3 \le k \le n^2 - 1$.

Definition 2.3: If L_E admits decomposition (P₁, P₃, P₅, ..., P_(2n-1)), then the decomposition is called an Arithmetic Odd Path Decomposition (OPD) of L_E .

Remark 2.4: For OPD in L_E , always we treat P_1 as e.

Remark 2.5: In this paper, we study the Extended Lobster L_E with $q=n^2$ and so the term Extended Lobster L_E always means L_E with $q=n^2$.

Our main theorem can now be stated as follows:

Theorem 2.6: If the extended Lobster L_E admits OPD (P₁, P₃, P₅, ..., P_(2n-1)), then $\sqrt{l+5} \le n \le 2 + \sqrt{l}$.

Proof: Assume that L_E admits OPD. Clearly diam $(L_E) \ge l + 4$.

38

Case (i): P₁ and P₃ can be obtained from L_E without taking any edge from P_l . Then, for P₅, we must have only one edge from P_l , for P₇, we must have 3 edges from P_l , for P₉, we must have 5 edges from P_l , ..., for P _(2n-1), we must have [(2 *n* -1)-4] edges from P_l .

Hence
$$l = 1+3+5+...+[(2i-1)-4]+...+[(2n-1)-4]=(n-2)^2 \Rightarrow n = 2 \pm \sqrt{l}$$

Case (ii) Each path P_{2i-1} , i = 2, 3, 4, ..., n has edges from P_l . Then, for P_3 , we must have one edge from P_l , for P_5 , we must have one edge from P_l , for P_7 , we must have three edges from P_l , for P_9 , we must have five edges from $P_l ...,$ for $P_{(2n-1)}$, we must have [(2 n - 1)-4] edges from P_l . Thus $l = 1+1+3+5+...+[(2 n-1)-4] = n^2 - 4n + 5 \Rightarrow n = 2 + \sqrt{l-1}$

Case (iii): atleast one edge of each $P_{(2i-1)}$, i = 2, 3, 4, ..., n must be in P_l . Then l = 1+1+3+5+...+[(2 n-1)-4], which is same as case (ii).

Case (iv): Let $P_{(2r-1)}$ and $P_{(2s-1)}$ be two paths in the decomposition with origin v_r and v_s respectively.

Figure (5)

Then we have $l = 1+3+7+9+\ldots+(2n-1) = n^2 - 5 \Rightarrow n = \pm \sqrt{l+5}$. Hence $\sqrt{l+5} \le n \le 2 + \sqrt{l}$.

Remark 2.7: Let L_E be an extended Lobster and P_l be the underlying path obtained from L_E –e. Let N_1 denotes the set of vertices in L_E – e which are at a distance one from P_l . Let $n_1 = |N_1|$. Let N_2 denotes the set of pendant vertices of L_E – e which are at a distance two from P_l . Let $n_2 = |N_2|$.

Theorem 2.8: Let L_E be the Extended Lobster with underlying path P_l of length l and $n = 2 + \sqrt{l}$. If L_E admits OPD ($P_1, P_3, P_5, ..., P_{(2n-1)}$), then $n_2 = 2n-3$.

Proof: Suppose L admits OPD. Since $n = 2 + \sqrt{l}$, no edge of P₁ and P₃ must be in P_l. Thus P₁ contributes 0 for n₂, P₃ contributes 1 for n₂, P₅ contributes atmost 2 for n₂, P₇

contributes at most 2 for $n_2, \ldots, P_{(2n-1)}$ contributes at most 2 for n_2 . Thus $n_2 = 1 + 2(n-2) = 2n-3$.

Example 2.9: We take L_E with $q=5^2$. Consider $L_E - e$ Then $n = 2 + \sqrt{l} \Rightarrow l=9$.

Figure (6)

Here the underlying path P_l of $L_E - e$ is $v_1v_2v_3v_4v_5v_6v_7v_8v_9v_{10}$. Clearly $P_1 = e =$ u_7w_8 . From the Lobster L_E – e, we can easily construct P_3 as $u_4w_4v_7w_8$, since no edge of P₃ must be in P_l . Also P₅ is $u_1w_1v_1v_2w_2u_2$, P₇ is $u_3w_3v_5v_4v_3v_2w_6u_6$ and P₉ is $u_5w_5v_{10}v_9v_8v_7v_6v_5w_7u_7$.

Hence $N_2 = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\}$ and $n_2 = 7$.

Theorem 2.10: If L_E be an extended Lobster with underlying path P_l of length l and n $=\sqrt{l+5}$. Then L_E admits OPD (P₁, P₃, P₅, ..., P_(2n-1)) if and only if L_E –e is a path.

Proof: Assume that L_E admits OPD. To prove all the internal vertices of vertices of L_E –e are of degree 2. Suppose not. Let u be an internal vertex of L_E –e of degree > 2 as shown in figure (7).

40

Figure (7)

Let e_1 be an edge incident with u, which is not in L_E –e. Then e_1 is the first or the last edge of some path P (2k-1). Thus $l + 4 = 1+3+5+7+ \dots + (2k-3)+(2k-1-1)+(2k+1)+ \dots + (2n-1)$.

 $\Rightarrow l + 5 = n^2 - 1 \Rightarrow n = \pm \sqrt{l + 6}$ which is a contradiction.

Hence L_E –e is a path. The converse part is obvious, since L_E has $q=n^2$.

ODD Star Decomposition of Extended Lobster

Definition 3.1: If L_E admits decomposition $(S_1, S_3, S_5, ..., S_{(2n-1)})$, then the decomposition is known as Arithmetic odd Star Decomposition or simply odd star decomposition(OSD).

Remark 3.2: Let L_E be the extended Lobster with $q = n^2$. Then L_E –e is a Lobster with the longest path P.

Remark 3.3: For OSD in L_E , always we treat S_1 as e.

Result 3.4: If L_E admits OSD (S_1 , S_3 , S_5 , ..., $S_{(2n-1)}$), then diam ($L_E - e$) $\leq 2n-2$.

Proof: diam $(L_E - e) \le \text{diam} (S_3) + \text{diam} (S_5) + \text{diam} (S_7) + ... + \text{diam} (S_{(2n-1)}) = 2n-2$. Hence diam $(L_E - e) \le 2n-2$. Now we are ready to prove Theorem 3.5.

Theorem 3.5: Let L_E be an Extended Lobster with $q = n^2$ and diam ($L_E - e$) = 2n-2. If L_E admits OSD ($S_1, S_3, S_5, ..., S_{(2n-1)}$) with $S_1 = e$ if and only if

 L_E –e is a caterpillar with (n-1) non-adjacent junctions and There is no junction – neighbour in L_E .

Proof: Suppose L_E admits OSD. Since diam $(L_E - e) = 2n-2$, the centres of S_3 , S_5 , ..., $S_{(2n-1)}$ lie in P. Thus L_E –e is a caterpillar. Since S_1 is e and diam $(L_E - e) = 2n-2$, there is exactly one non-support in between any two centres. Hence there are (n-1) non-adjacent junctions in L_E –e.

Next to prove there is no junction-neighbor in L_E - e. Suppose there is atleast one junction – neighbor in L_E – e. Let the junction – neighbor be $e_i = x_i y_j$. Then there exist junction supports v_i and v_j such that d (v_i , v_j) 3. Therefore $\leq E (L_E - e) - E (S_3 \cup S_5 \cup ... \cup S_{2n-1}) > = 2S_1$, which is a contradiction. Hence there is no junction – neighbor in L_E – e. The converse part is obvious.

References

 Ebin Raja Merly, E. and Gnanadhas, N. 2011," Linear Path Decomposition of Lobster", International Journal of Mathematics Research. Volume 3, Number 5, pp. 447-455.

- [2] Ebin Raja Merly, E. and Gnanadhas, N. 2012, "Linear star Decomposition of Lobster", International Journal of Contemporary Mathematical Sciences, Vol.7, no. 6, 251–261.
- [3] Frank Harary, 1972, Graph theory, Addison Wesley Publishing Company.
- [4] Gnanadhas N.and Paulraj Joseph J., 2003, "Continuous Monotonic Decomposition of
- [5] Cycles", International Journal of Management system, Vol.19, No.1, Jan-April pp. 65-76.
- [6] Gnanadhas, N. and Paulraj Joseph, J. 2000,"Continuous Monotonic Decomposition of Graphs", International Journal of Management system. 16(3), 333-344