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Abstract 
 

This study examined how six estimation methods of a simultaneous equation 
model cope with varying degrees of correlation between pairs of random 
deviates using the Variance and Total Absolute Bias (TAB). A two-equation 
simultaneous system was considered with assumed covariance matrix. The 
model was structured to have a mutual correlation between pairs of random 
deviates which is a violation of the assumption of mutual independence 
between pairs of such random deviates. The correlation between the pairs of 
normal deviates were generated using three scenarios of r = 0.0, 0.3 and 0.5. 
The performances of various estimators considered were examined at various 
sample sizes, correlation levels and 50 replications. The sample size, 

30,25,20=N each replicated 50 times was considered. OLS is performed best 
when the variance is used to study the finite sample properties of the 
estimators in that it produces the least variances in all the cases considered and 
at all sample sizes. All the estimators revealed an asymptotic pattern under 
CASE I. 
 
Keywords: Monte Carlo, Random Deviates, Mutual Correlation, Total 
Absolute Bias, Root Mean Square Error. 

 
 
Introduction 
In 1940, sixty nine years had passed since the term “Monte Carlo methods” was 
coined by Physicists working on nuclear weapons projects in the Los Alamos 
National Laboratory. Monte Carlo methods have in the last two decades found 
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extensive use in many fields such as operational research, nuclear physics and 
econometrics to mention but few, where there are a variety and complexity of 
problems beyond the available resources of the theoretician Adepoju ([1], [3]). For the 
last two decades several investigations have concerned themselves with the Monte 
Carlo Methods, notable among them are; [17], [14], [10], [6], [7], [8], [4], [15], [9] 
and [16]. 
 Monte Carlo simulation is a method of analysis based on artificially recreating a 
chance process (usually with a computer), running it many times, and directly 
observing the results. 
 In Monte Carlo studies, the econometrician generates data sets and stochastic 
terms which are free of the problems of multi collinearity, non spherical disturbances, 
measurement error and even specification error. In the context of simultaneous 
equation system, the design of Monte Carlo experiments requires the generation of 
orthogonal normal deviates or mutually independent sequences distributed as ( )1,0N . 
These normal deviates are then transformed to ensure that the disturbance terms are 
distributed as ( )Σ,0N  which are not serially correlated, where Σ  is the assumed 
variance-covariance matrix of the disturbances, however, in real life situation, the 
errors are not completely free of correlation ([2], [5] and [11]). This study therefore, 
examined the performance of the estimators of two-equation simultaneous model to 
varying degrees of correlation between pairs of normal deviates.  
 The rest of this paper is divided into four sections. Section 2 discusses the general 
framework, section 3 focuses on the generation of sample data, and section 4 presents 
and discusses the simulation results while the conclusion is presented in section 5. 
 
The General Framework of the study 
Simultaneous equation models (SEM), as the name makes clear, the heart of this class 
of models lies in a data generation process that depends on more than one equation 
interacting together to produce the observed data.  
 Unlike the single-equation model in which a dependent (y) variable is a function 
of independent (x) variables, other y variables are among the independent variables in 
each SEM equation. The y variables in the system are jointly (or simultaneously) 
determined by the equations in the system.  
 We assume the following two structural equations: 

  12211112211 ttttt UXXYY +++= γγβ  

  23321121122 ttttt UXXYY +++= γγβ  

 These equations can be rewritten as follows; 

  12211112211 ttttt UXXYY +++=− γγβ  

  23321122112 ttttt UXXYY +++= γγβ  

 The two equations above are exactly identified. 
 The reduced form model is derived as; 

  UXY +Γ=β  

  UXY 11 −− +Γ=⇒ ββ i.e VX +π  

 Where, Γ= −1βπ  
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and by extension we obtained the following endogenous equations: 
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Generation of Monte Carlo Data 
We will use Monte Carlo simulation to understand the properties of different statistics 
computed from sample data. In other words, we will test-drive estimators, figuring out 
how different recipes perform under different circumstances. Our procedure is quite 
simple: In each case we will set up an artificial environment in which the values of 
important parameters and the nature of the chance process are specified; then the 
computer will run the chance process over and over; finally the computer will display 
the results of the experiment. 
 The main task is the generation of stochastic dependent (endogenous) 
variables ( )TtiYit ,...,1;2,1 == , which are subsequently used in estimating the 

parameters of the model. 
 To achieve this, the following have to be assumed 
(i) Values of the predetermined variables tX1 , tX 2 , and ( )TtX t ,...,13 =  

(ii) Values of the parameters, 12β , 21β , 11γ , 12γ , 32γ . 
(iii) Values of the elements Ω  
 
 The simulation of the error term ( )TiUit ,...,2,1=  is the most complex step in 

generating stochastic dependent variables. To set up our Monte Carlo experiment, we 
proceed as follows. 
(i) The sample size N is specified as N= 20, 25, 30 
(ii) Numerical values are assigned arbitrarily to each of the structural parameters as 
follows; 

 5.112 =β , 8.121 =β , 5.111 =γ , 5.111 =γ  5.012 =γ , 0.232 =γ  for all cases 

 The covariance matrix of the disturbances is specified arbitrarily as follows 

  Ώ = 11 12

21 22

σ σ
σ σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
5.0 2.5

2.5 3.0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 The standard random number generator with values obtained from uniform 
distribution with mean 0 and standard deviation 1 by [12] is used to generate values of 
the exogenous variables, ( )TtiX it ,...,1;3,2,1 == . 
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Generation of Random Disturbance Term, U 
A 3-stage process is employed here to generate random disturbance terms. In the first 
stage, independent series of normal deviates of required length (N=20, 25, 30) are 
generated. At the second stage, these series were then standardized to have a normal 
distribution with mean zero and variance 1. Lastly, the random disturbance terms 
were generated assuming three degrees of correlation between the pairs of random 
deviates. 
Case I: no correlation between the random deviates ( 0

21, =εεr ), 

Case II: 0.3 correlation level between the random deviates ( 3.0
21, =εεr ), 

Case III: 0.5 correlation level between the random deviates ( 5.0
21, =εεr ). 

 
 The samples sizes considered for each scenario are N=20, 25 and 30. The pairs of 
random normal deviates based on these sample sizes were generated, each replicated 
50 times. The deviates were then standardized and appropriately transformed to have 
a specific variance-covariance matrix  Σ  assumed in the model. Numerical values 
were generated for exogenous variables of the model as described above. 
 Those selected ( )tt 21 εε  are then transformed to be distributed as ( )Σ,0N where Σ is 

( ) Ttt IUUCov ⊗Ω=′ and elements of Ω  are decomposed by a non- singular matrix 

ρ such that  

  Ω=′ρρ  

 Recall, UV 1−= β  
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 According [13], M  independent terms of standard normal deviates of length N  
can be transformed into M  series of random normal variables with mean 0 and 
predetermined covariance matrix. In this model, 2=M  i.e. tU1 , tU2 if the covariance 

matrix is  
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 Where ( ) 111var σ=U , ( ) 222var σ=U  and ( ) 1221cov σ=UU considering both upper 
and lower triangular matrices. Let upper triangular matrix be given by 
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 The pair of standard deviates can be transformed into a pair of random normal 
variables with mean Zn variance 11σ , 22σ and covariance 12σ by using 
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to obtain a pair of random disturbances for the upper triangular matrix: 

  1.4043707825128.1 12121111 +=+= ttttU εεηεη  

  tttU 22222 732050808.1 εεη ==    

where Tt ,...,2,1=   
 Similarly, an alternative solution can be obtained for the lower triangular matrix: 

  tttU 11111 236067978.2 εεη =′=′      

  tttttU 212221122 322875656.1118033989.1 εεεηεη +=′+′=′  

 
Generation of Endogenous Variables 
With the numerical values already assigned to the structural parameters, we have all 
the values required for the generation of the endogenous variables. Considering the 
upper and lower triangular matrix Ut1, Ut2 defined as; 
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 And lower triangular Matrix 1 2t tU U′ , ′  
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 Solving Yt1 and Yt2 using upper triangular matrix we have; 

1 1 2 3 1 2Y  = -1.411764706X  - 0.588235294X  - 2.117647059X   -0.588235294U  - 0.88235294Ut t t t t t  

2 1 2 3 1 2Y  = -1.411764706X  - 0.588235294X  - 2.117647059X   -0.88235294U -0.588235294U  t t t t t t  

 Solving Yt1 and Yt2 using lower triangular matrix we have 

1 1 2 3 1 2Y  = -1.411764706X  - 0.588235294X  - 2.117647059X   -0.588235294U  - 0.88235294Ut t t t t t′ ′

2 1 2 3 1 2Y  = -1.411764706X  - 0.588235294X  - 2.117647059X   -0.88235294U -0.588235294U  t t t t t t′ ′  

 
 
Simulation Results 
Careful study of Table 1 reveals that OLS houses the smallest TAB in majority of the 
cases for both equations and across triangular matrices P1 and P2 followed by 23LIML 
estimators. 
 In most cases, the total absolute bias increases with increase correlation between 
the random deviates. The total biases of all the estimators for both P1 and P2 arising 
from equation one exceed those of equation two. All the estimators exhibit a 
consistent pattern for CASE I, when there is no correlation between the random 
deviates, of decreasing TAB as N increases for both equations and triangular matrices 
except 23LIML estimators that do not show any consistent pattern.  
 The TAB decreases as the sample size changes for P1 and P2 in case I. The same 
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pattern is noticed in the second and third case. 
 In Table 2 for upper triangular matrix P1, and for N = 20, all the estimators except 
produce variances that increase as the correlation changes across the three cases under 
consideration except FIML that produced variances that decrease as we move from 
Case I through II to III. Similar observation is noticed for equation 2 where only OLS 
gives decreasing values.  
 For N = 30, all the estimators yield variances that increase with changing 
correlation levels from 0.0 to 0.3 to 0.5. 
 However, for N = 25, there is no systematic pattern in the behaviors of the 
estimators. 
 Investigating the asymptotic behavior of the estimators under each scenario 
reveals that for Case I of zero correlation almost all the estimators reveal an 
asymptotic pattern. However, for the 2nd and 3rd Cases when r = 0.3 and r = 0.5, no 
such asymptotic behaviors are revealed except for FIML in equation two that revealed 
an asymptotic behavior. 
 Also in the same Table 2, for the lower triangular matrix P2, the behaviors of the 
estimators are similar to those observed for upper triangular matrix at N = 20. For N = 
25 and N = 30, no consistent pattern are noticed. The variances produced by the 
estimators are minimum at N = 25 in equation two for Cases II and III.     
 OLS is best when the variance is used to judge the performance of the estimators 
since it produces the least variances in all the cases considered and at all sample sizes.  
 

Table 1: Perfomances Of Estimators Using Total Absolute Bias 
 

  N = 20 N = 25 N = 30 
P1 Estimator I II III I II III I II III 
 
 
EQ1 

OLS 3.3760 3.3730 3.4199 3.3741 3.4107 3.3946 3.3724 3.4211 3.4170 
ILS 4.5181 4.4124 4.4797 4.3669 4.6172 4.4894 3.8225 6.1121 4.5708 
23LIML 3.7126 3.3132 3.6537 3.5115 4.4509 4.4509 6.2624 8.0454 3.1665 
FIML 6.8290 5.4856 4.6810 5.6198 5.4444 5.4444 5.0629 6.1430 5.9434 

 
 
EQ2 

OLS 2.9543 2.9455 8.8777 2.9464 2.9169 2.8607 2.9265 2.8906 2.8846 
ILS 4.2106 4.1274 4.1454 4.0548 4.3185 4.1797 4.0531 4.3784 4.2672 
23LIML 3.2050 2.9999 2.9432 2.9529 3.1396 3.1396 2.5441 5.3884 2.7923 
FIML 5.3568 4.5267 4.3447 4.3838 4.4850 4.4850 4.1927 5.6080 5.7476 

  N = 20 N = 25 N = 30 
P2 Estimator I II III I II III I II III 
 
 
EQ1 

OLS 3.4084 3.3298 3.3307 3.3763 3.3512 3.2961 3.3052 3.3722 3.3415 
ILS 4.5154 4.6283 4.4620 4.3562 4.6158 4.5009 4.3334 4.6469 4.6585 
23LIML 2.9670 2.5098 3.5777 3.6065 2.8491 2.8491 8.4369 3.7109 3.6084 
FIML 6.9300 5.9220 5.0014 5.5848 5.2457 5.2457 5.2728 5.3022 5.6120 

 
 
EQ2 

OLS 2.9519 2.9716 2.9809 2.7405 2.9981 2.9653 2.6312 2.9488 2.9771 
ILS 4.0017 4.3325 4.1396 4.0448 4.3035 4.1954 4.0894 4.3166 4.3441 
23LIML 2.5548 2.5059 15.4501 2.5211 2.8224 2.8224 1.6565 2.5316 3.4331 
FIML 4.6817 5.0722 4.5796 4.2567 4.3101 4.3101 4.0238 4.1883 4.8434 
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Table 2: Perfomances of Estimators Using Variance 
 

  N = 20 N = 25 N = 30 
P1 Estimator I II III I II III I II III 
 
 
EQ1 

OLS 0.1054 0.1112 0.1857 0.185 0.2356 0.0928 0.2059 0.2205 0.2224 
ILS 0.2385 7.4470 11.0035 7.0050 8.3790 6.1030 9.8757 10.4835 11.5611 
23LIML 0.2651 0.4508 4.1712 5.6919 4.3823 0.1530 0.9880 1.3548 2.1727 
FIML 5.9628 0.9247 0.5237 0.7121 0.4536 0.5872 5.4091 6.2091 7.5431 

 
 
EQ2 

OLS 0.3060 0.2156 0.1506 0.1194 0.1169 0.0958 0.1608 0.1632 0.2063 
ILS 3.0666 8.0353 13.1387 8.0236 9.6987 6.8755 11.101 12.5165 13.4029 
23LIML 0.1431 0.7453 0.8323 1.5454 4.3649 4.4795 2.0624 3.5480 8.3925 
FIML 0.4368 0.3935 0.6943 0.6839 0.6309 0.7557 0.7997 21.7628 22.7202 

  N = 20 N = 25 N = 30 
P2 Estimator I II III I II III I II III 
 
 
EQ1 

OLS 0.0728 0.1202 0.3881 0.1755 0.2373 0.0929 0.1757 0.0642 0.1336 
ILS 0.2017 9.8222 11.0589 7.0025 8.9624 5.7285 10.0756 10.2478 8.6970 
23LIML 6.8917 25.3490 30.8048 8.6678 6.106 18.7943 13.2586 5.6785 4.3195 
FIML 4.4916 5.7443 2.9991 16.5013 0.4703 0.6759 3.2285 1.1838 1.0049 

 
 
EQ2 

OLS 0.2170 0.2032 0.1310 0.7211 1.1063 0.1054 0.8086 0.1488 0.1939 
ILS 0.3766 10.8285 11.4163 8.0465 10.0365 5.7799 10.9420 10.8432 9.1456 
23LIML 0.9232 16.4878 17.3273 25.2765 2.1032 4.4481 11.3215 7.0566 5.6054 
FIML 0.5846 4.4867 5.4418 24.4981 0.5929 0.4772 0.8457 0.8348 0.4576 

 
 
Conclusion  
The finite sampling properties of estimators used in this work are the Total Absolute 
Bias (TAB) and the Variance. Case I performed better than the other cases considered 
in respect of the variances of the estimators. OLS happens to be the best estimator 
since it produces the variances at all levels of correlation and sample sizes. In about 
65% of the time, the TAB produced by the lower triangular matrix were better than 
those produced by the upper triangular matrix. 
 As the sample size increases from 20 through 25 to 30, the values of the 
estimators get closer to the true  parameters in about 72% of the cases across the 
upper and lower triangular matrices.  
 CASE II, where the correlation between the pairs of random deviates is 0.3 has the 
least proportion of ‘best’ estimates and hence few ‘best’ estimators. The most 
frequent estimator in this interval is the ILS and 23SLIML. 
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