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Abstract

This study examined how six estimation methods of a simultaneous equation
model cope with varying degrees of correlation between pairs of random
deviates using the Variance and Total Absolute Bias (TAB). A two-equation
simultaneous system was considered with assumed covariance matrix. The
model was structured to have a mutual correlation between pairs of random
deviates which is a violation of the assumption of mutual independence
between pairs of such random deviates. The correlation between the pairs of
normal deviates were generated using three scenarios of r = 0.0, 0.3 and 0.5.
The performances of various estimators considered were examined at various
sample sizes, correlation levels and 50 replications. The sample size,
N = 20,25,30 each replicated 50 times was considered. OLS is performed best

when the variance is used to study the finite sample properties of the
estimatorsin that it produces the least variances in al the cases considered and
at al sample sizes. All the estimators revealed an asymptotic pattern under
CASEI.

Keywords. Monte Carlo, Random Deviates, Mutual Correlation, Total
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Introduction

In 1940, sixty nine years had passed since the term “Monte Carlo methods’ was
coined by Physicists working on nuclear weapons projects in the Los Alamos
National Laboratory. Monte Carlo methods have in the last two decades found
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extensive use in many fields such as operational research, nuclear physics and
econometrics to mention but few, where there are a variety and complexity of
problems beyond the available resources of the theoretician Adepoju ([1], [3]). For the
last two decades several investigations have concerned themselves with the Monte
Carlo Methods, notable among them are; [17], [14], [10], [6], [7], [8], [4], [15], [9]
and [16].

Monte Carlo simulation is a method of analysis based on artificialy recreating a
chance process (usually with a computer), running it many times, and directly
observing the results.

In Monte Carlo studies, the econometrician generates data sets and stochastic
terms which are free of the problems of multi collinearity, non spherical disturbances,
measurement error and even specification error. In the context of simultaneous
equation system, the design of Monte Carlo experiments requires the generation of
orthogonal normal deviates or mutually independent sequences distributed asN(0,1).

These normal deviates are then transformed to ensure that the disturbance terms are
distributed asN(0,X) which are not serialy correlated, where X is the assumed

variance-covariance matrix of the disturbances, however, in rea life situation, the
errors are not completely free of correlation ([2], [5] and [11]). This study therefore,
examined the performance of the estimators of two-equation simultaneous model to
varying degrees of correlation between pairs of normal deviates.

The rest of this paper is divided into four sections. Section 2 discusses the general
framework, section 3 focuses on the generation of sample data, and section 4 presents
and discusses the simulation results while the conclusion is presented in section 5.

The General Framework of the study

Simultaneous equation models (SEM), as the name makes clear, the heart of this class
of models lies in a data generation process that depends on more than one equation
interacting together to produce the observed data.

Unlike the single-equation model in which a dependent (y) variable is a function
of independent (x) variables, other y variables are among the independent variables in
each SEM equation. The y variables in the system are jointly (or simultaneously)
determined by the equations in the system.

We assume the following two structural equations:

Yo = BoYoo + 71X + ¥ X Uy
Yio = PV + VX + 7 X3 Uy,
These equations can be rewritten as follows,
—Yu = By + 1 X + ¥ X +Uy
BriYa =Yeo + VX + ¥, Xig +U,
The two equations above are exactly identified.

The reduced form mode! is derived as;
BY =TX+U

=SY=FTX+BUienX+V
Where, 7=8"T
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and by extension we obtained the foll owing endogenous equations:

1
Ytl = —( 711Xt1 + 7/21th + ﬂzﬂ/lzxtl + ﬂ217/32 th +Utl + /leutz)
1- ﬁ21ﬂ12

1
Yt2 = —( 712xt1 + ﬂ12711Xt1 + ﬂ127/21xt2 + 732xt3 + :H12Ut1 +Ut2)
1- ﬂzlﬂlz

Y, :[7/11+ﬂ21712jxu+( £ thz"'[ B jxts_i_(utl"'ﬂzlutzj
1- ,leﬁlz 1- 1321:812 1- ﬂZlIBIZ 1- 1621:812
Yt2 :£ﬂ12711+712jxt1+( ﬂ12721 th2+( }/32 th3+(ﬂ12utl+ut2j
1- ﬁ211512 1- lelﬂlz 1- ﬁZlﬂlZ 1- ﬂZlﬁlZ
Generation of Monte Carlo Data
We will use Monte Carlo simulation to understand the properties of different statistics
computed from sample data. In other words, we will test-drive estimators, figuring out
how different recipes perform under different circumstances. Our procedure is quite
simple: In each case we will set up an artificial environment in which the values of
important parameters and the nature of the chance process are specified; then the
computer will run the chance process over and over; finally the computer will display
the results of the experiment.
The main task is the generation of stochastic dependent (endogenous)
variablesY, (i =12t=1...,T), which are subsequently used in estimating the
parameters of the model.

To achieve this, the following have to be assumed
(i) Values of the predetermined variables X, , X, , and X, (t=1...,T)

(ii) Values of the parameters, B,,, By, Vi1, Y121 722-
(i) Vaues of the elements Q

The simulation of the error term U, (i =12,...,T) is the most complex step in
generating stochastic dependent variables. To set up our Monte Carlo experiment, we
proceed as follows.

(i) The sample size N is specified as N= 20, 25, 30
(if) Numerical values are assigned arbitrarily to each of the structural parameters as
follows;

B, =15 B, =18, ¥y =15, 1, =15 7, =05, y5, =20 for al cases

The covariance matrix of the disturbances is specified arbitrarily as follows
o= %z)_ 50 25
O, Oy 25 30
The standard random number generator with values obtained from uniform

distribution with mean 0 and standard deviation 1 by [12] is used to generate values of
the exogenous variables, X, (i=123t=1..,T).
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Generation of Random Disturbance Term, U

A 3-stage process is employed here to generate random disturbance terms. In the first
stage, independent series of normal deviates of required length (N=20, 25, 30) are
generated. At the second stage, these series were then standardized to have a normal
distribution with mean zero and variance 1. Lastly, the random disturbance terms
were generated assuming three degrees of correlation between the pairs of random
deviates.

Case|: no correlation between the random deviates (r, . =0),
Casell: 0.3 correlation level between the random deviates (r, . =0.3),
Caselll: 0.5 correlation level between the random deviates (r, . =0.5).

The samples sizes considered for each scenario are N=20, 25 and 30. The pairs of
random normal deviates based on these sample sizes were generated, each replicated
50 times. The deviates were then standardized and appropriately transformed to have
a specific variance-covariance matrix X assumed in the model. Numerical values
were generated for exogenous variables of the model as described above.

Those selected (g,&,, ) are then transformed to be distributed asN(0,Z)whereX is
Cov(U,U/)=Q®|,and elements of Q are decomposed by a non- singular matrix
p such that

pp’ =Q
Recall, V = U

Cm]z( s /fﬂmeuj
V) (BB B \Ue

According [13],M independent terms of standard normal deviates of length N
can be transformed into M series of random normal variables with mean O and
predetermined covariance matrix. In thismodel, M =2 i.eU,, U, if the covariance

matrix is
o, O
Q — ( 11 12]
0-21 0-22

Wherevar(U, )=, var(U,)=0, and cov(U,U,)= o, considering both upper
and lower triangular matrices. Let upper triangular matrix be given by

P1:[7711 7712}
0 7y

and lower triangular matrix as
P, = (7711 0 J
Ny Ty

0-11 0-12 J

21 0-22

Then
Q=aw:(
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The pair of standard deviates can be transformed into a pair of random normal
variables with mean Z" variance s, , 0,, and covariance o, by using

U E
[ 1t}:Ut — e, :(7711 7712}{ lt:|
U 0 7y ) €xn

to obtain apair of random disturbances for the upper triangular matrix:
U, =n,&y +7,E, =1.707825128¢,, +1.4043

U, =1,,E, =1.732050808,,
wheret=12,..., T
Similarly, an alternative solution can be obtained for the lower triangular matrix:
U, =n,&, = 2236067978,
U7, =71,Ey +15,E, =1.11803398%,, +1.322875656¢,,

Generation of Endogenous Variables

With the numerical values already assigned to the structural parameters, we have all
the values required for the generation of the endogenous variables. Considering the
upper and lower triangular matrix Uy, Uy, defined as;

‘U, | (1707825128 1.443375673)[ &,
U, | 0 1.732050808

And lower triangular Matrix U’,,,U”,,
U’ | (1.707825128 0 £,
U, } B [1.443375673 1.732050808] th }
Solving Y and Y+, using upper triangular matrix we have;
Y, =-1411764706X,, - 0.588235294X, - 2.117647059X,, -0.588235294U,, - 0.882352%4U,,

Y,, =-1411764706X, - 0.588235204X,,, - 2.117647059X,, -0.88235294U,,-0.588235294U,,

Solving Y4 and Y using lower triangular matrix we have
Y, =-1L411764706X,, - 0.5882352HX , - 2117647059X,, -0.588235294U),, - 0.88235294U),,

Y,, =-L411764706X,, - 0.588235204X,,, - 2.117647069X,, -0.88235204,,-0.588235204,

th

Simulation Results

Careful study of Table 1 reveals that OLS houses the smallest TAB in mgjority of the
cases for both equations and across triangular matrices P, and P, followed by 23LIML
estimators.

In most cases, the total absolute bias increases with increase correlation between
the random deviates. The total biases of all the estimators for both P, and P, arising
from equation one exceed those of equation two. All the estimators exhibit a
consistent pattern for CASE I, when there is no correlation between the random
deviates, of decreasing TAB as N increases for both equations and triangular matrices
except 23LIML estimators that do not show any consistent pattern.

The TAB decreases as the sample size changes for P, and P, in case |. The same
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pattern is noticed in the second and third case.

In Table 2 for upper triangular matrix P, and for N = 20, all the estimators except
produce variances that increase as the correlation changes across the three cases under
consideration except FIML that produced variances that decrease as we move from
Case | through Il to I11. Similar observation is noticed for equation 2 where only OLS
gives decreasing values.

For N = 30, al the estimators yield variances that increase with changing
correlation levelsfrom 0.0 to 0.3 to 0.5.

However, for N = 25, there is no systematic pattern in the behaviors of the
estimators.

Investigating the asymptotic behavior of the estimators under each scenario
reveals that for Case | of zero correlation amost al the estimators revea an
asymptotic pattern. However, for the 2™ and 3" Cases when r = 0.3 and r = 0.5, no
such asymptotic behaviors are revealed except for FIML in equation two that revealed
an asymptotic behavior.

Also in the same Table 2, for the lower triangular matrix P, the behaviors of the
estimators are similar to those observed for upper triangular matrix at N = 20. For N =
25 and N = 30, no consistent pattern are noticed. The variances produced by the
estimators are minimum at N = 25 in equation two for Cases Il and I11.

OLS is best when the variance is used to judge the performance of the estimators
since it produces the least variances in all the cases considered and at all sample sizes.

Table 1: Perfomances Of Estimators Using Total Absolute Bias

N =20 N =25 N =30

P, |Estimator|| 1 1 I I Il I I Il

OLS 3.3760|3.3730|3.4199 |3.3741|3.4107(3.3946|3.3724|3.4211(3.4170
ILS 4.5181(4.4124(4.4797 14.3669|4.6172|4.4894(3.8225(6.1121(4.5708
EQL|23LIML |3.7126|3.3132|3.6537 |3.5115|4.4509|4.4509(6.2624(8.0454|3.1665
FIML 6.8290(5.4856|4.6810 [5.6198|5.4444|5.4444(5.0629|6.1430|5.9434

OLS 2.9543|2.9455|8.8777 [2.9464(2.9169(2.8607|2.9265|2.8906)|2.8846
ILS 4.2106)4.1274|4.1454 14.0548|4.3185(4.1797|4.0531)|4.3784(4.2672
EQ2|23LIML |3.2050|2.9999|2.9432 |2.9529|3.1396|3.1396(2.5441(5.3884(2.7923
FIML 5.3568|4.5267|4.3447 [4.3838(4.4850(4.4850|4.1927]5.6080)5.7476

N =20 N =25 N =30

P, |Estimator|| 1 1 I 1 Il I 1 Il

OLS 3.4084|3.3298|3.3307 |3.3763|3.3512|3.2961|3.3052(3.3722(3.3415
ILS 4.5154|4.6283|4.4620 |4.3562|4.6158|4.5009|4.3334|4.6469|4.6585
EQL{23LIML |2.9670(2.5098|3.5777 |3.6065(2.8491|2.8491(8.4369|3.7109|3.6084
FIML  |6.9300|5.9220|5.0014 |5.5848|5.2457|5.2457|5.2728(5.3022(5.6120

OLS 2.9519(2.9716)2.9809 |2.7405)2.9981(2.9653|2.6312|2.9488(2.9771
ILS 4.0017{4.3325(4.1396 |4.0448]4.3035[4.1954(4.0894(4.3166(4.3441
EQ2|23LIML |2.5548|2.5059|15.4501]|2.5211|2.8224|2.8224|1.6565(2.5316|3.4331
FIML 4.6817)5.0722|4.5796 14.2567|4.3101(4.3101]4.0238|4.1883(4.8434




Robustness of S multaneous Estimation Methods 231

Table 2: Perfomances of Estimators Using Variance

N =20 N =25 N =30
P, |[Estimatorl [l I [ [l I [ [l I

OLS 0.1054[0.1112 |0.1857 |0.185 [0.2356 [0.0928 [0.2059 [0.2205 [0.2224
ILS 0.2385(7.4470 [11.0035|7.0050 [8.3790 [6.1030 [9.8757 |10.4835[11.5611
EQ1|23LIML [0.2651]/0.4508 [4.1712 [5.6919 [4.3823 [0.1530 [0.9880 [1.3548 [2.1727
FIML  |5.9628]|0.9247 [0.5237 [0.7121 |0.4536 [0.5872 [5.4091 |6.2091 |7.5431
OLS 0.3060[0.2156 [0.1506 [0.1194 [0.1169 [0.0958 [0.1608 |0.1632 [0.2063
ILS 3.0666(8.0353 [13.1387(8.0236 [9.6987 [6.8755 [11.101 |12.5165[13.4029
EQ2(23LIML [0.1431[0.7453 |0.8323 |1.5454 [4.3649 |4.4795 |2.0624 [3.5480 [8.3925
FIML  |0.4368]/0.3935 [0.6943 [0.6839 [0.6309 |0.7557 [0.7997 |21.7628]|22.7202
N = 20 N =25 N =30
P, |[Estimatorl [l I [ [l I [ [l I

OLS 0.0728[0.1202 [0.3881 [0.1755 [0.2373 [0.0929 [0.1757 |0.0642 [0.1336
ILS 0.2017[9.8222 [11.0589|7.0025 [8.9624 |[5.7285 |10.0756|10.2478(8.6970
EQL[{23LIML [6.8917|25.3490]|30.8048|8.6678 [6.106 |18.7943]|13.2586(5.6785 [4.3195
FIML  |4.4916|5.7443 [2.9991 [16.5013/0.4703 [0.6759 [3.2285 |1.1838 [1.0049
OoLS 0.2170[0.2032 [0.1310 [0.7211 [1.1063 [0.1054 |0.8086 |0.1488 [0.1939
ILS 0.3766[10.8285|11.4163(8.0465 [10.0365|5.7799 |10.9420(10.8432(9.1456
EQ2[23LIML [0.9232|16.4878|17.3273[25.2765(2.1032 |4.4481 |11.3215(7.0566 |5.6054
FIML  |0.5846|4.4867 [5.4418 |24.4981|0.5929 [0.4772 [0.8457 |0.8348 |0.4576

Conclusion

The finite sampling properties of estimators used in this work are the Total Absolute
Bias (TAB) and the Variance. Case | performed better than the other cases considered
in respect of the variances of the estimators. OLS happens to be the best estimator
since it produces the variances at all levels of correlation and sample sizes. In about
65% of the time, the TAB produced by the lower triangular matrix were better than
those produced by the upper triangular matrix.

As the sample size increases from 20 through 25 to 30, the values of the
estimators get closer to the true parameters in about 72% of the cases across the
upper and lower triangular matrices.

CASE 11, where the correlation between the pairs of random deviatesis 0.3 has the
least proportion of ‘best’ estimates and hence few ‘best’ estimators. The most
frequent estimator in thisinterval isthe ILS and 23SLIML.
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