Global Journal of Mathematical Sciences. Theory and Practical.
ISSN 0974-3200 Volume 3, Number 5 (2011), pp. 459-472

© International Research Publication House
http://www.irphouse.com

Estimation of Mortality Rate Deceleration
Parameter: Centroid and Polylogarithm Function

'E.S. Lakshminarayanan and ?U. Kumaran

'Professor, School of Mathematics, Madurai Kamaraj University,
Madurai, TamilNadu, India
E-mail: mkueslnmath@yahoo.com
?Research scholar, School of Mathematics, Madurai Kamaraj University,
Madurai, Tamil Nadu, India
E-mail: kumara810@gmail.com

Abstract

Estimation of mortalitv rate deceleration parameter led us to an
equation involving polyvlogarithm function and that equation has been
solved graphically.
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1 INTRODUCTION

The Gompertz hazard function is commonly used to describe age-specific
mortality rates in populations and experimental cohorts:

pit) = ae™,

(1)
where p(t) is the instantaneous mortality rate at age ¢; a is the initial mor-
tality rate, sometimes referred to as the age-independent mortality rate; and
b is the age-dependent mortality rate. If b = 0, the mortality rate increases
indefinitely and exponentially with age. Thus, b is also called the senescence
parameter. The Gompertz function has the virtue of simplicity: it has only
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two parameters, and In(wp(t)) is a linear function of ¢ {with intercept In{a
and slope ). Because it 1= commonly presented in logarithmic form. a and
b are olso known as the intercept and elope parameters [10. The Comperts
function provides a fairly good fit for mortality rate data in & wide range of
organisms [2|. However, it does not describe deceleration of mortality rates at
old apes. The Gowperls hasard [unelion implicitly assuipes that all individ-
nals in a cohort or populaticn have the same mortality risk, an assumption
that is biologically implausible. Vaupel and his collaborators have developed
a class of maortality models that incorporate heterogeneity in individual mor-
tality risk, or frailty [13]. A frailty model based on the Compertz hazard
funection is

Eift] = Ziﬂfhf ¥

where 7r,(t) is the mortality rate of individual ¢ at age = and z; is the frailty
of individual 2. An individual with a frailty of 2, for example, has twice the
hazard at any given time as an individual with a frailty of 1. If it is assumed
that mean frailty at birth is 1, and that frailty is + distributed with variance
72, then there is a relatively simple expression for the cohort mortalisy rate
at age t:

al E‘&t

1+ “”Tﬂl'_ef'f —1)

where 72it) 1s the weighted average of the death rates of the individuals who
comprise the population at age ¢ [14]. If o* = 0, equation (2) reduces ta
equation (1), If o2, b > €, then p(t) increases exponentialy at vounger ages
but eventually appreaches an asymprote equal to — [10].

Meost commonly this mortality deceleration 1s measured by the life-table
aging rate, introduced by Horiuchi and colleagues [5] . but also other methods
were used previcusly. Mortality would decelerate aleng various trajectories
rather than merely plateau [15], and it is better to consider departure from
the Compertz law racher than just convergence of mortality to a plateau level
7]

In [6] we have shawn that (the pointwise approximation of Logistic frailty
model to Gompertz model) when % < ¢ "' the degree of smallness of o*
cannot he determined interms of a, b and e=%=_ In this work, we provide an
estimation for o* from areawise approximation of (1) and (2) .

m(t) (2]
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2 HEstimation of ¢°

In this paper we are intrested in studying the relation between 52 and ¢*. In
order to find these unknown constants, we are in need of two equations. To
obtain the equations ., we observe that

1. The area (denoted by Aj) under the eurve of Logistic Frailty Mortality
funetion upteo t* 15 significantly eqnal to the area [denoted by As) under
the curve of Gompertz mortality function npto ¢*.

2. The centre of mass of 4, is significantly equal to the centre of mass of

As.

- etamide - S e ceftT (bt 1041 ety
Then by standard procedure (see Appendix) we get, | APy , 55— ) is the

centre of mass of A;. Similiarly for Ay the centre of mass is

.
In(1 + 2220 _ 1))dt )
JDF 142 it .

3 J- 7 ]
E?g.(l+%[€5f‘ 1)) 22 ‘1—|-.J.':IE?1I_1+.1‘]_

*

[f we equate the above two peints coordinate wise and after a little alzebra
we get

P

2
[f-n{l—F 7 (e —1)dt =

P e — 1

-
Inil+ 2 (e ), (3)

. b hle"™ — 1) b~
1]
ao bt _ 9 _ T ; (1
b ! (1+)in(l4+x)" =
axrd T
where r— L
I

Clearly, for a given a and b, @ = 0 and ¢* = 0 is the trivial solution of above
systemn.

Sinee 0 < m and 1 — Wiﬂﬂ-r) < 1.Wr = 0 [rom (4) we have
. . 2 8
the estimation %e&*

o

o
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In order ta improve the estimation rewrite equation (3) as

bt* )
_ . ]
In(1 4+ 22 (et — 1)) e —1 ‘

bt= .
ffn{l—i—% e — 1) )du
1— 0

bi®
Considering [ In(1+ ng( e —1))du in (5), integration by parts gives
i

bt* 0 0
2 2 In(l ¢ In(l ¢
/'En(l-i-ﬂf Y1) )du = Emt*ln-ﬂ—ﬂ:l-i- / mr‘—jcft— ] ﬂ(—jfft.
b - ‘ ‘ b t t
0 _d.cl'2 _a.crzebt‘
5 5
l—mg—g 1—21;—2
(6)
Notice that the right hand side integrals represent polylogarithm finctions

2 2 =
., _umw _uw ew
Lio(z), where z = E and —2
| F 1— r.tc'r2 ]

. As far as anyone knows, there are

ag?
exactly eight values of = for which = and Tag(=) ean hoth he given in closed
form [1].

Substivuting (6) into (5), we gel

—bt'ln(1— %) = Lis(~—7) + Lis(~2) e
1+ b b — ) l:--.
In(1 4+ 222 (et — 1)) w1 (7
sSince Ay = A, it follows that
rmz L ﬂ.r’J’z nie
In(1+ ; (" —1)) = T(P - 1) (8)
In view of (8), equation (7) becomes
9 2 ac? oo? bt 2
(e ey Bt 1 Ef*r!- . 1 @ _[. b L b [ _ T It*
bi‘c yooh n( b] izl l—#jl 15 l_%z} b]
o1, equivalently
. ac? b ac?
a bt 4 Lf-?.(——l%rl' — Lis(——7) 0 o
TR TR |
= +ln(l — —).

bt b ) b
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It Gg and —In{1— %j are significantly equal (neglecting second and higher

order terms), then the above equation reduces to

u.u' gbt” aer
ﬂft”f + urzf—fj:r’l — % - L-ig{—l—*;g-}
bt — =0 f'!;lj

Sinee this equation contams polylogarithm functions, we try to obtain a so-
Iition graphically.

To find a nontrivial sclution of (9) we equate

ﬁiw'Lﬁ(li;ﬂ=ﬂ (10)
and . | % |
T_L?-E'-i—l_%]:ﬂ. (11)
On aceonmt of (4), (10) hecomes
x o ot*
o R e e ey +I"525_1b_%3’:“- (12)

Solving equations (11) and (12) graphically (see the figures), we get

o2
& < 00077 and %}aum. (13)
o2 bt ol
Recalling » = —2— it follows that Tz < T:az < 00077 and hence
1-2= 1-== 1-5=
aec?

- < 000764116
Now conbining with [13), we ges
lll'.?'z

b

< min{0.01,0.00764116} = 0.00764116
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aa?

Putting %= = 0.00764116 in {4) and solving (by using Mathematica 5.1),

we get ¢/ = 1.2008. For this particular “gg and " we have = = 0.00024616,

which is greater tham 0.0077. Therefore we reduce the value of “’%, using
(4), until r satisfies the inequality = < 0.0077. This results in

2
% < 0.0064.

1

(14)

Summing up, we have

Theorem: For a given a, b there exists o > 0 satisfying the estimation (14)
provided % is significantly equal to In(1 — %j

v . . 2 :
Surprisingly, the numerical samples show that for a given - the solution
of equation (4),

bt*

e

b

remains in the neighhourhood of 1.2.

Table 1 (reprinted from [3, 4, 8,9, 11, 12] )

Species a b | o = o006t | M| e in(1— =) = Brror
Mosquito 0.002 | 0332 | L0 0.0060241 | 1.20059 —0.0000182181
Drosophila Melanogaster | 0.0019 | 0.24 | 0.67 | 0.00530417 | 1.20033 —0.0000141171
Drosophila Melanogaster | 0.00028 | 0.1608 | 0.60 | 0.00104478 | 1.19713 —0.000000546163
Callosobruchus Maculatus [ 0.002 | 0.261 | 0.518 | 0.00396035 | 1.20040 —0.00000780878
Human 0.0001 | 0.1 | 025 0.00025 1.20032 —0.0000000312552
Parage Ageria 0.0038 | 0.19 | 122 0.0244 1.20247 —0.000302613
Mosquito 0.003 | 02238 | L0 0.0134048 | L2011 —0.0000906:544
Mosquito 0.00815 | 0.22 1.0 0.00370455 | 1.20367 —0.000703616
Mosquito 0.0221 | 0.14 L0 (0L157857 | L21677 —0.0130484
Mosquito 0.01168 | 0.22 | 15 0.0796364 | 1.20803 —0.00335007

A simple comparsion of % given in (14) with the numerical data (Table 1) re-

veals that estimation (14) holds upto % is significantly equal to —In(

3
_a).
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Figure 1:

Here the dotted curve represents 2 [1 ] and the enother curve represents Ley(—z).

- r
(1+x)in 1+’

Figure 2:

aad 2
Here the dotted curve represents 1l¢ and the cther enrve reprosents Ligl——).
Tr

e

ag= S



466

3

Notice that considering the areawise approximation the estimation for

E.S Lakshminarayanan and U. Kumaran

CONCLUSION

acrﬂ

b

significantly improved. It is worth mentioning that we are unable to get the
estimation for e"" from equation (4). Also we couldn’t derive the equation
for o2 alone.
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Appendix

4 Centroid of an area under the curve

By definition of centroid [16] we have

b
[ -( —an 'dr
. . . il — 1 al
_ _ total moments (rdirection; .

total area b
Sz — y1)da
ok

a

, o S ulry — ao)dy
total moments |y direction) p

5 = = y
[lz1 — w2)dy

total aren

For Gompetz Model

[
(s —y)de
— I

£ h
J o2 =y
i
Here o =1, h=1* ya = as™_ 5 = (.
t
J| atettdt
— ]

T = —
f e dt
1]

S — 1) 41

b=t — 1)
similarly,
L]
Ju(rr — z2)dy
L

L=
o d

f.ew_ — wady

=
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-
InZ

Here e =0, d = ﬂ-:"bf‘. r = £ o = <
asbt”
cebt” S owin(Lidy
f ?f*if't -t fcbt™ 2 Bt (2w . Lt
ytay B pelae™ 1= fae™ )bt (ae™ )"
Fri o _ 2 2b 4b
S weht® - t*aebt” — acht™ b= gebt”
acht* S In(idy ' b b
f trdy — ——
]
After simplications we get
L aet
T =
Y 1

BT L i R
The centre of mass of A, is ( B 1) 4 )

Logistic Frailty Model

b
[xlys  yi)da

— @

b
[ —wde
[}

e
Herea =0, b =1" ys = —=—— mn =10
T e

e 2
£ ¢ 2 s .. Jin{1422= et —1))at
: n bt " ini1425—e™ —1)i i) L o
Since f'ﬁ;é:Trdf = L ;2' L —
p el

the above equation becomes

= 5
2 e Inf 14222 bt 17 d¢
£ i1+ l:e!“ -1} ;JIr R+ 1)
- T - =

¢ 2 bee e
Infl %y ettt 1)
Tl




470 E.S Lakshminarayanan and U. Kumaran

which gives

.
[In(l + 2 (e — 1))at
0

In(14 (b — 1))

Similarly,

d
Jyler = wa)dy
- _ &
o i
‘I[ (11 — wa)dy
&
i 2)+in( 225
- _ | b= 1— HT-
Here c =0, d=7(1" = —F——. ni=1t". m = ;
I+==ie* 1)
a
. |— =2
S .[n'i:l—ln'g:l
E(t) N La "1_1{_'
J oyt = ; ey
T=— — (15)
" 1- )
pieT) f’“iii'*”*f%:'
vl" [f* _ z _Lb_ Jl'fl;t_,l
]
Qetting ¥ — =« (15 of
Setting & = z, (15) gives
= i r-\lﬂﬂ
e In(z)+in{—5]
l—=F \
[ oazitt — o Jd=
— 1]
Y= P
mi ) In:::l+1n|:—_?r )
" 1—azs
[ (# - T
i
a
EtT) ,nfl—rj;” |
. = p (=] : 1—ar .
Now consider the numerator a [ z(#* — Enl'; L4 .
0
Clomputing each integral seperately, we get
i)
[ oogb g — FEt
J wttdz = da2
0
=itT)
_Jr! zlnfz)dz e o
__t — _TE) o BTy 1
b = T2 ["r'”f- a ) :]
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] 4 ety 2
F o=ty Tt e eReed men? o meety,
Pt Z T T
mlld p = 3
Finally, we pet
it} i Lant .]
ki = W— —2 0k —2
. " _ In(z) 1= \z — poe =) In(? {f*}j_ 1
b b 2a 2ab a 2
0
I (A e P e B o
By (2T L bt pie)e® (| _ Btle®
i)~ sl - = -1 -557)
| a b

After scme lrtle algebra, we get

Lob [ omithet ar’ e a0t .
Numerator = —— | — +ht"—in(l = —1+Infe™™ +—1 -1
2act b ' h ' b i

—_— _z._urﬂ

M,! | n[‘“?.l:l —T;I

Similarly consider the derominater [ (#* - 'E“’b:' +—+—)dz.

0

We compute cach mtegral scperately,

[ Tt
/ t'd: = At \
i

0
T
J infzla - i
C ) J,”[ﬂ[f J) \
l ul R ‘
Bt 5
a ag —yE ]
-z \ P _H ) as ey 8 a2
! T £ 1 \ —TI(# , # -
[ Inl el O Elin(—=% ) + Lo (5 — In(l - 255
EI ——r A 1_\1'.' 4 wr= " 3 J
and =
b b
T 1—'&—'-;‘:""2 %l ait=jad
; i (T - 2T
. T () J— . .
Dencminator = £=——=22 [ In(5) - l)+ — ;
b

After scme little algebra, we get
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1 2 e QT
Denominator = — |bt' —in(1 — ﬂ} +In(e™™ + i[1 — e
o b b

b [ bt — n{l — %J +in(e " 4 O';ZBU — et =

Wy B
Thus, 7 = ~ : . : _
Y 207 bt —In(l — 5= )+ In(e™™ + -(1 — 7)) ]

or, equivalently

b E':f.b:'a
¥ = 92 1- aa? s b= a2 i —weeyy |
20 bttt —In(1 — ==] + In(e~® 4 S(1 — e7b7))

Since —in(1 — TEET) — ppv (1 — 222 4 Jn(ebt 4 982 (] _ b)) the

above equation reduces to

b (£
Y= 5 1- bl_ TR ,
20'"' _3”{1_%3

_ _ x
I =952 |:l (L4 2)n(l + )

} ,Where = = .

-
J (1428 (e 1))

1] [} 1 _ xr

(bt 1)) P 2% (1+x)in(1+z)

The centre of mass of A, is | ¥ — —
(1457




