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Abstract 
 

In this paper we prove the existence of coincidence points and common fixed 
points for large class of a almost contractions in cone metric spaces and obtain 
results of Berinde as a corollary in S -cone metric spaces. 
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Introduction  
In this section, we introduce the familiar notions of cone metric spaces, and state the 
results of Berinde, which we need in the next section. 
 
Definition 1.1 (S. Rezapour [7]): Let E be a real Banach space and P a subset of E. P 
is called a cone if  

(i) P is closed, non empty and ܲ ്  ሼ0ሽ; 
(ii) ܽݔ ൅ א ݕܾ  ,ݔ ׊ ܲ  א ݕ  ܲ and non negative real numbers a, b; 
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(iii) ܲ ת ሺെܲሻ  ൌ  ሼ0ሽ. 
 
 Note also that the relations ݅݊ݐ ܲ ൅ ك ܲ ݐ݊݅  ك ܲ ݐ݊݅ ߣ ݀݊ܽ ܲ ݐ݊݅  ൐ ߣሺ ܲ ݐ݊݅ 
 0ሻ hold. For a given cone ܲ ك  we can define on E a partial ordering ൑ with ,ܧ
respect to P by putting ݔ ൑ ݕ if and only if ݕ  െ א ݔ  ܲ. Further, ݔ ൏  stands for ݕ 
൑ ݔ ് ݔ and ݕ  ݔ while ,ݕ  ا ݕ stands for ݕ െ  denotes the ܲ ݐ݊݅ where ,ܲ ݐ݊݅ א ݔ
interior of P. 
 
Definition 1.2 (L.G. Huang [5]): Let X be a nonempty set. A mapping ݀: ܺ ൈ ܺ ՜  ܧ
satisfying 

(i) 0 ൑  ݀ሺݔ, ,ݔ ׊ ሻݕ ݕ א ܺ and ݀ሺݔ, ሻݕ ൌ 0 if and only if ݔ ൌ  ;ݕ
(ii) ݀ሺݔ, ሻݕ ൌ ݀ሺݕ, ,ݔ׊ ሻݔ ݕ א ܺ; 
ሺiiiሻ ݀ሺݔ, ሻݕ ൑ ݀ሺݔ, ሻݖ ൅ ݀ሺݖ, ,ݔ׊ ሻݕ ,ݕ ݖ א ܺ, 

 
is called a cone metric on X, while (X,d) is called a cone metric space. 
 
Example 1.3: Let ሺܺ, ݀ଵሻ, ሺܺ, ݀ଶሻ be two metric spaces (that is, ݀ଵ, ݀ଶ are two metrics 
on the same underlying space X). Let ܧ ൌ  ܴଶ be the Euclidean plane and  
 ܲ ൌ{(ݔ, א(ݕ ܴଶ:ݔ, ݕ ൒ 0}. Then P is a cone in E. Define ݀: ܺ ൈ ܺ ՜ ܲ by 
  ݀ሺݔ, ሻݕ ൌ(݀ଵሺݔ, ,ݔ)ሻ, ݀ଶݕ ,ݔ ׊ ((ݕ ݕ א ܺ; Then ሺܺ, ݀) is a cone metric space. 
 
Note: If ߙ, ߚ ൐ 0 and if we define ݀ሺݔ, ሻݕ ൌ ሺα݀ଵ(ݔ, ,ݔ)ሻ,β݀ଶݕ ,ݔ ׊ ሻሻݕ ݕ א ܺ, then d 
is also cone metric on X. 
 
Definition 1.4 (L.G. Huang [5]): Letሺܺ, ݀) be a cone metric space,ݔ א ܺ and 
ሼݔ௡ሽ௡ஹଵa sequence in X. Then 

(i) ሼݔ௡ሽ௡ஹଵ converges to ݔ whenever for every ߝ א with 0 ܧ  ا  there is a ,ߝ
natural number N such that ݀(ሺݔ௡, ሻݔ ا for all ݊ ൒ ߝ ܰ. We denote this 
by lim௡՜ஶ   .௡→ x, as in the usual caseݔ ௡ = x orݔ

(ii) ሼݔ௡ሽ௡ஹଵ is a Cauchy sequence whenever for every εאE with 0اε there is 
a natural number N such that dሺݔ௡ା௣,  ;ε for all n ≥ N and all p ا ( ௡ݔ

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is 
convergent. 

 
Definition 1.5 (M. Abbas [1]): Let S and T be self maps of a nonempty set X. If there 
exists א ݔ ܺ such that ܵݔ ൌ  then x is called a coincidence point of S and T, while ݔܶ 
ൌ ݕ ൌ ݔܵ   .is called a point of coincidence of S and T ݔܶ 
 If ܵݔ ൌ ൌ ݔܶ   .then x is a common fixed point of S and T ,ݔ 
 
Definition 1.6 (G. Jungck [6]): Let S and T be self maps of a nonempty set X. The 
pair ሺܵ, ܶሻ of mappings is said to be weakly compatible if they commute at their 
coincidence points. 
 The next proposition (M. Abbas and G. Jungck [1], Proposition 1.4) will be 
needed in our main result. 
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Proposition 1.7: Let S and T be weakly compatible self maps of a nonempty set X. 
 If S and T have a unique point of coincidence ݕ ൌ ൌ ݔܵ   then y is the unique ,ݔܶ 
common fixed point of S and T. 
 Berinde [3] proved the following theorem for an almost contractive self map on a 
complete metric space  
 
Theorem 1.8 (V. Berinde [4], Theorem 1): Let (X, d) be a complete metric space 
and ܶ ׷  ܺ ՜ ܺ an almost contraction, that is a mapping for which there exist a 
constant ߜ א ሺ0,1ሻ and some ܮ ൒ 0 such that 
   ݀ሺܶݔ, ሻݕܶ ൑ . ߜ ݀ሺݔ, ሻݕ ൅ ,ݕሺ݀ܮ  ,ሻݔܶ ,ݔ ݈݈ܽ ݎ݋݂ א ݕ  ܺ …  (1.8.1)  
 
 Then 

ሺܶሻܨ .1 ൌ ሼא ݔ  ܺ ׷ ൌ ݔܶ  ሽݔ  ്  ; ׎
2. For any ݔ଴ ௡ሽ௡ୀ଴ݔX, the Picard iteration ሼ א

ஶ  given by ݔ௡ାଵ ൌ  ௡ convergesݔܶ
to some אכݔ F(T); 

3. The following estimate holds ݀ሺݔ௡ା௜ିଵ, ሻ כݔ ൑ ఋ೔

ଵିఋ
,௡ݔ)݀  ݊ , (௡ିଵݔ ൌ

0,1,2 … . , ݅ ൌ 1,2. . . .. 
 
 This theorem concludes that ܶ has a fixed point. However, the fixed point need 
not be unique in view of the following example. 
 

Example 1.9: Define ܶ: ሼ0,1ሽ ՜ ሼ0,1ሽ by ܶሺݔሻ ൌ  ൜0 ݂݅ ݔ ൌ 0
ݔ ݂݅ 1 ൌ 1  

 Then T satisfies (1.8.1) and T has two fixed points. 
 Berinde [4] extended this result as a coincidence theorem to two self maps on a 
cone metric space(X, ݀ሻ as follows 
 
Theorem 1.10 (V. Berinde [4], Theorem 2): Let (X, d) be a cone metric space and 
let ܶ, ܵ ׷  ܺ ՜  ܺ be two mappings for which there exist a constant ߜ א ሺ0, 1ሻ and 
some ܮ ൒ 0 such that 
 ݀ሺܶݔ, ሻݕܶ ൑ ,ݔሺܵ݀ ߜ ሻݕܵ ൅ ,ݕሺܵ݀ܮ  ,ሻݔܶ ,ݔ ݈݈ܽ ݎ݋݂ ݕ א  ܺ  (1.10.1) 
 
 If the range of S contains the range of T and S(X) is a complete subspace of X, 
then T and S have a coincidence point in X. Moreover, for any ݔ଴א X, the iteration 
ሼܵݔ௡ሽ defined by ܵݔ௡ାଵ ൌ  .of T and S כݔ ௡ converges to some coincidence pointݔܶ
 The coincidence point obtained from theorem (1.10) need not be unique in view of 
example (1.9) (by taking ܵ ൌ ܶ). 
 In order to obtain a common fixed point theorem from the above coincidence 
point theorem Berinde [4] imposed an additional contractive condition which makes 
the coincidence point unique and hence becomes a common ϐixed point.  
 
Theorem 1.11 (V. Berinde [4], Theorem 3): Let (X, d) be a cone metric space and 
let ܶ, ܵ ׷  ܺ ՜  ܺ be two mappings satisfying (1.10.1) for which there exist a constant 
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ߠ א  ሺ0, 1ሻ and some ܮଵ ൒  0 such that 
  ݀ሺܶݔ, ሻݕܶ ൑ ݀ߠሺܵݔ, ሻݕܵ ൅ ,ݔଵ ݀ሺܵܮ ,ݔ ሻ, for allݔܶ א ݕ  ܺ ,  (1.11.1) 
 
 If the range of S contains the range of T and S(X) is a complete subspace of X, 
then T and S have a unique coincidence point in X. Moreover, if T and S are weakly 
compatible, then T and S have a unique common fixed point in X. In both cases, for 
any ݔ଴ ௡ାଵݔܵ ௡ሽ defined byݔX, the iteration ሼܵ א ൌ  ௡ converges to the uniqueݔܶ
common fixed point (coincidence point) כݔ of S and T. 
 Babu et.al [3] unified (1.10.1) and (1.11.1) in the metric space context for a single 
map and obtained the following theorem. 
 
Theorem 1.12 (G. V. R. Babu [2], Theorem 2.3): Let (X, d) be a complete metric 
space and let T : X →X be a map satisfying the condition  
 ݀ሺܶݔ, ሻݕܶ ൑ ,ݔሺ݀ ߜ ሻݕ ൅ ,ݔሼ݀ሺ݊݅݉ ܮ ,ሻݔܶ ݀ሺݕ, ,ሻݕܶ ݀ሺݔ, ,ሻݕܶ ݀ሺݕ,   ሻሽݔܶ
 
 Then T has a unique common fixed point. 
 In the cone metric space context of the above theorem, Berinde [4] has proved the 
following Theorem 1.13. 
 
Theorem 1.13 (V. Berinde [4], Theorem 4): Let (X, d) be a cone metric space and 
let ܶ, ܵ ׷  ܺ ՜  ܺ be two mappings for which there exist a constant ߜ א  ሺ0, 1ሻ and 
some ܮ ൒  0 such that 
݀ሺܶݔ, ሻݕܶ ൑ ,ݔሺܵ݀ߜ ሻݕܵ ൅ ,ݔሼ݀ሺܵ݊݅݉ ܮ ,ሻݔܶ ݀ሺܵݕ, ,ሻݕܶ ݀ሺܵݔ, ,ሻݕܶ ݀ሺܵݕ,  ሻሽ (1.13.1)ݔܶ
 
for all ݔ, א ݕ ܺ. If the range of S contains the range of T and S(X) is a complete 
subspace of X, then T and S have a unique coincidence point in X. Moreover, if T and 
S are weakly compatible, then T and S have a unique common fixed point in X. In 
both cases, for any ݔ଴אX, the iteration ሼܵݔ௡ሽ defined by ܵݔ௡ାଵ ൌ  ௡ converges toݔܶ
the unique common fixed point (coincidence point) כݔ of S and T. 

 
Note: In Theorem 1.13 the right hand side of the equation (1.13.1) may not be 
meaningful, since ݉݅݊ሼ݀ሺܵݔ, ,ሻݔܶ ݀ሺܵݕ, ,ሻݕܶ ݀ሺܵݔ, ,ሻݕܶ ݀ሺܵݕ,  ሻሽ may not exist inݔܶ
P (cone of E). 
 In order to overcome this difficulty, in the next section we introduce the concept 
of S-type control function, and obtain a satisfactory account of the above theorem. 
 
 
Main results 
In this section we introduce the concept of S-type control function and obtain a 
satisfactory account of theorem (1.13) 
 
Definition 2.1: Let E be a real Banach space and P a cone in E. Suppose ߮: ܲସ ՜ ܲ is 
a continuous function which satisfies the condition. 
(S) : ߮(ݐଵ, ,ଶݐ ,ଷݐ ସ ሻݐ ൌ 0 if any one of ݐଵ, ,ଶݐ ,ଷݐ  .ସ is zeroݐ
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 Then ߮ is called a S– type control function.  
 
Example 2.2: Let E be a Banach space, P be a cone in E. Let ݐଵ, ,ଶݐ ,ଷݐ  ସ be boundedݐ
linear functionals on E. Define φ: ܲସ→P by  
 φ(ݐଵ, ,ଶݐ ,ଷݐ | ସ) ൌݐ ଵ݂ሺݐଵሻ. ଶ݂ሺݐଶሻ. ଷ݂ሺݐଷሻ. ସ݂ሺݐସሻ|(ݐଵ ൅ ଶݐ ൅ ଷݐ ൅  (ସݐ
 
 Then φ is continuous and satisfies ߮(ݐଵ, ,ଶݐ ,ଷݐ ସሻݐ ൌ 0 if any one of ݐଵ, ,ଶݐ ,ଷݐ  ସ isݐ
zero. Thus ߮ is a S - type control function.  
 
Definition 2.3: Let (X, d) be a cone metric space with normal cone P and normal 
constant K. Suppose ܵ ൌ ሼ݀ሺݔ, :ሻݕ ,ݔ ݕ א ܺሽ is a totally ordered subset of P. Then (X, 
d) is called a S –cone metric space. 
 
Example 2.4: Let ܧ ൌ ܴଶ, ܲ ൌ ሼሺݔ, ሻݕ א ݔ:ܧ ൒ 0, ݕ ൒ 0ሽ and ܺ ൌ ሾ0,1ሿ.  
 Define ݀: ܺ ൈ ܺ ՜ ܲ by ݀ሺݔ, ሻݕ ൌ ሺ|ݔ െ ଵ,|ݕ

ଶ
ݔ|  െ   .(|ݕ

 Then (X, d) is a S –cone metric space.  
 We observe that every metric space is a S - cone metric space. 
 
Example 2.5: Let (X, ݀ଵ) be a metric space and ߙ ൐  0. Let E and P be as in Example 
2.4. Define ݀: ܺ ൈ ܺ ՜ ,ݔሺ݀ ݕܾ ܲ ሻݕ ൌ( ݀ଵ (ݔ, ,ሻݕ ,ݔଵ ሺ݀ߙ ,ݔ ׊ ሻ ሻݕ ݕ א ܺ. 
 Then (X, d) is a S –cone metric space. 
 
Example 2.6: Let (X,d) be a S – cone metric space and let S,T be self maps on X. 
Define ߮ሺݔ, ሻݕ ൌ ݉݅݊ሼ݀ሺܵݔ, ,ሻݔܶ ݀ሺܵݕ, ,ሻݕܶ ݀ሺܵݔ, ,ሻݕܶ ݀ሺܵݕ, ,ݔ׊ ሻ ሽݔܶ ݕ א ܺ,  
then ߮ is a S - type control function.  
 
Theorem 2.7: Let (X, d) be a cone metric space and let ܶ, ܵ ׷  ܺ ՜  ܺ be two 
mappings for which there exist a constant δ(1 ,0) א and a S – type control function φ 
such that 
݀ሺܶݔ, ሻݕܶ ൑ ,ݔሺܵ݀ߜ ሻݕܵ ൅ ߮ሼ݀ሺܵݔ, ,ሻݔܶ ݀ሺܵݕ, ,ሻݕܶ ݀ሺܵݔ, ,ሻݕܶ ݀ሺܵݕ,   ሻሽ  (2.7.1)ݔܶ
 
,ݔ ׊   ݕ א ܺ. If the range of S contains the range of T and S(X) is a complete 
subspace of X, then T and S have a unique coincidence point in X. Moreover, if T and 
S are weakly compatible, then T and S have a unique common fixed point in X. In 
both cases, for any ݔ଴ ௡ାଵݔܵ ௡ሽ defined byݔX, the iteration ሼܵא ൌ  ௡ converges toݔܶ
the unique common fixed point (coincidence point) כݔ of S and T. 
 
Proof: Let x଴ be an arbitrary point in X. Since ܶሺܺሻ ؿ   ܵሺܺ), we can choose a point 
଴ݔܶ ଵ in X such thatݔ ൌ   ௡ in X, we can findݔ ଵ. Continuing in this way, for aݔܵ 
௡ାଵݔX such that S א ௡ାଵݔ  ൌ ݊ ,௡ݔܶ ൌ 0,1,2 (2.7.2) 
 
 If ݔ ൌ ݕ ,௡ିଵݔ ൌ  ,௡ are two successive terms of the sequence defined by(2.7.2)ݔ
then by ( 2.7.1) we have 
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 ݀ሺܶݔ௡ିଵ, ௡ሻݔܶ ൑ ,௡ିଵݔሺܵ݀ ߜ  ௡ሻݔܵ
 ൅߮ሼ݀ሺܵݔ௡ିଵ, ,௡ିଵሻݔܶ ݀ሺܵݔ௡, ,௡ሻݔܶ ݀ሺܵݔ௡ିଵ, ,௡ሻݔܶ ݀ሺܵݔ௡,   ௡ିଵሻሽݔܶ
 ֜ ݀ሺܶݔ௡ିଵ, ௡ሻݔܶ ൑ ,௡ିଶݔሺܶ݀ ߜ  ௡ିଵሻݔܶ
  ൅߮ሼ݀ሺܶݔ௡ିଶ, ,௡ିଵሻݔܶ ݀ሺܶݔ௡ିଵ, ,௡ሻݔܶ ݀ሺܶݔ௡ିଶ, ,௡ሻݔܶ ݀ሺܶݔ௡ିଵ,  ௡ିଵሻሽݔܶ
 
 In view of (2.7.2). since ݀ሺܶݔ௡ିଵ, ௡ିଵሻ ൌݔܶ  0, the above equation reduces to 
 ݀ሺܶݔ௡ିଵ, ௡ሻݔܶ ൑ ,௡ିଶݔሺܶ݀ ߜ   ௡ିଵሻݔܶ
 ݀ሺܶݔ௡ିଵ, ௡ሻݔܶ ൑ ,௡ିଷݔଶ݀ሺܶߜ   ௡ିଶሻݔܶ
 
 Hence, in general, we have 
 ݀ሺܶݔ௡ିଵ, ௡ሻݔܶ ൑ ,଴ݔ௡ିଵ݀ሺܶߜ   ଵሻ  (2.7.3)ݔܶ
 
 Now for p ൒ 1, we get 

 ݀൫ܶݔ௡ା௣, ௡൯ݔܶ ൑ ݀൫ܶݔ௡ା௣, ௡ା௣ିଵ൯ݔܶ ൅ ݀൫ܶݔ௡ା௣ିଵ, ௡ା௣ିଶ൯ݔܶ ൅   ڮ

  ൅݀ሺܶݔ௡ାଵ,  .௡ሻݔܶ
  ൑ ,଴ݔ௡ା௣ିଵ݀ሺܶߜ ଵሻݔܶ ൅ ,଴ݔ௡ା௣ିଶ ݀ሺܶߜ ଵሻݔܶ ൅ ڮ ൅ ,଴ݔ௡݀ሺܶߜ  .ଵሻݔܶ
  ൌ ௣ିଵߜ௡ሺߜ ൅ ௣ିଶߜ ൅ ڮ ൅ 1ሻ ݀ሺܶݔ଴,  ଵሻݔܶ

  ൌ  ఋ೙ሺଵିఋ೛ሻ
ଵିఋ

 ݀ሺܶݔ଴,  ଵሻݔܶ

  ൑  ఋ೙

ଵିఋ
 ݀ሺܶݔ଴,  ଵሻݔܶ

 
 Let now 0 ا ε be given. Choose λ ൐  0 such that ߝ ൅ ఒܰሺ0ሻ ؿ  where ,ܲ ݐ݊݅

ఒܰሺ0ሻ ൌ ሼݕ א :ܧ ԡݕԡ ൏  ሽ. Also choose a natural number ଵܰ such thatߣ

 ఋ೙

ଵିఋ
 ݀ሺܶݔ଴, ଵሻݔܶ א  ఒܰሺ0ሻ ׊ ݊ ൒  ଵܰ  

 
 Then ఋ೙

ଵିఋ
 ݀ሺܶݔ଴, ଵሻݔܶ ا ݊ ׊ ߝ ൒  ଵܰ 

 And hence ݀൫ܶݔ௡ା௣, ௡൯ݔܶ  ൑ ఋ೙

ଵିఋ
 ݀ሺܶݔ଴, ଵሻݔܶ ا , ߝ ݊ ׊ ൒  ଵܰ  

which shows that ሼܶݔ௡ሽ is a Cauchy sequence and hence ሼܵݔ௡ሽ is also Cauchy.  
 
 Since S(X) is complete, there exists a כݔin ܵሺܺሻ such that 
 ݈݅݉௡՜ஶܶ ௡ݔ ൌ ݈݅݉௡՜ஶܵ ௡ݔ ൌ  (2.7.4)  .… כݔ
 
 We can find א ݌  ܺ such that ܵ݌ ൌ כݔ since) כݔ  א  ܵሺܺሻ ) 
 Now we show that ሼܶݔ௡ሽ  ՜  ݌ܶ
 We have, by (2.7.1) 
 ݀ሺܶݔ௡, ሻ݌ܶ ൑ ,௡ݔሺܵ݀ߜ ሻ݌ܵ ൅ ߮ሼ݀ሺܵݔ௡, ,௡ሻݔܶ ݀ሺܵ݌, ,ሻ݌ܶ ݀ሺܵݔ௡, ,ሻ݌ܶ ݀ሺܵ݌,  ௡ሻሽݔܶ
 Letting ݊ ՜ ∞, we get that  
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݈݅݉௡՜ஶ ݀ሺܶݔ௡, ሻ݌ܶ
൑ ݈݅݉௡՜ஶሺ݀ߜሺܵݔ௡, ሻ݌ܵ
൅ ߮ሼ݀ሺܵݔ௡, ,௡ሻݔܶ ݀ሺܵ݌, ,ሻ݌ܶ ݀ሺܵݔ௡, ,ሻ݌ܶ ݀ሺܵ݌,  ௡ሻሽሻݔܶ

 
ൌ ݈݅݉௡՜ஶ݀ߜሺܵݔ௡, ሻ݌ܵ
൅ ߮ሼ݈݅݉௡՜ஶ݀ሺܵݔ௡, ,௡ሻݔܶ ݀ሺܵ݌, ,ሻ݌ܶ ݈݅݉௡՜ஶ݀ሺܵݔ௡, ,ሻ݌ܶ ݈݅݉௡՜ஶ݀ሺܵ݌,  ௡ሻሽݔܶ
ൌ ,כݔሺ݀ߜ ሻכݔ ൅ ߮ሼ݀ሺכݔ, ,ሻכݔ ݀ሺכݔ, ,ሻ݌ܶ ݀ሺכݔ, ,ሻ݌ܶ ݀ሺכݔ,  ሻሽכݔ
= 0. 
 So that lim୬՜ஶ݀ሺܶݔ௡, ሻ݌ܶ ൑ 0  
 Hence ݈݅݉௡՜ஶ ݀ሺܶݔ௡, ሻ݌ܶ ൌ 0 
 Thus ܶݔ௡ ՜  (2.7.5) … ݌ܶ 
 By (2.7.4) and (2.7.5) follows that ܶ݌ ൌ ݌ܵ  ൌ  כݔ
i.e. ݌ is a coincidence point of T and S. ( or כݔ is a point of coincidence of T and S). 
 Now we prove that כݔ (point of coincidence of T and S) is unique.  
 Let ܶݔ ൌ ݔܵ ൌ ݌ܵ and כݕ ൌ ݌ܶ ൌ  .be two points of coincidence of T and S כݔ
Then, we show that כݔ ൌ   כݕ 
 We have, from 
݀ሺܶݔ, ሻ݌ܶ ൑ ,ݔሺܵ݀ߜ ሻ݌ܵ ൅ ߮ሼ݀ሺܵݔ, ,ሻݔܶ ݀ሺܵ݌, ,ሻ݌ܶ ݀ሺܵݔ, ,ሻ݌ܶ ݀ሺܵ݌,  ሻሽݔܶ
 ൌ ,ݔሺܶ݀ߜ ሻ݌ܵ ൅ ߮ሼ0, 0, ݀ሺܵݔ, ,ሻ݌ܶ ݀ሺܵ݌,  ሻሽݔܶ
 ֜  ݀ሺܶݔ, ሻ݌ܶ ൑ ,ݔሺܶ݀ߜ ሻ݌ܵ ൅ 0 ൌ ,ݔሺܶ݀ߜ  ሻ݌ܶ
֜  ݀ሺܶݔ, ሻ݌ܶ ൌ 0 
֜ ݔܶ  ൌ   ݌ܶ
֜ כݔ ൌ  .כݕ 
 
 Thus כݔ is the unique point of coincidence of T and S. 
 Now suppose T and S are weakly compatible. 
 Then, by Proposition 1.7, כݔ is the unique point of coincidence of T and S. 
 The following example supports Theorem 2.7 
 
Example 2.8: Let (X, d) be a complete cone metric space and ݔ଴ אX be fixed. Let 
ܶ, ܵ: ܺ ՜ ܺ be defined by ܶݔ ൌ ݔܵ ଴ for every x in X, andݔ ൌ  .in X ݔ for every ݔ
Then T and S satisfy condition (2.7.1) and also ݔ଴ is the unique common fixed point 
of T and S. 
 
 
Particular case 
Theorem 1.13, the main result of Berinde [4] is a particular case of our main result. It 
follows as a corollary to our main result (Theorem 2.7) by taking the S -type control 
function ߮: ܲସ ՜ ܲ defined by ߮ሺݐଵ, ,ଶݐ ,ଷݐ ସሻݐ ൌ min ሼݐଵ, ,ଶݐ ,ଷݐ  ସሽ assuming that theݐ
minimum is meaningful. 
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