
Global Journal of Mathematical Sciences: Theory and Practical.
ISSN 0974-3200 Volume 3, Number 4 (2011), pp. 307-315
© International Research Publication House
http://www.irphouse.com

A Faster Negative Cycle Detection Algorithm

Saranya C.R.1כ and Shobhalatha G.2

1Department of Mathematics, Sri Sathya Sai Institute of Higher Learning,

Anantapur Campus, Anantapur, India
2Department of Mathematics, Sri Krishnadevaraya University,

Anantapur, India
 Corresponding Author E-mail: saranya.chenchu@gmail.comכ

Abstract

In this paper, we propose an algorithm for the negative cycle detection
problem. An algorithm for the negative cycle problem combines a shortest
path algorithm and a cycle detection strategy. On a graph with n vertices and
m edges, our algorithm runs in O(݊ଶ) time which is a better time bound for the
case where n is much lesser than m. We use a cycle detection strategy which is
a slight modification and culmination of the time out and walk to root
strategies. This algorithm does not maintain a queue or stack of distance labels
as the existing algorithms.

Keywords: Digraph, Weighted graph, Vertex set, Edge set, source, shortest
path, constraint graph and Negative cycle.

2000 MSC: 05C38, 05C85, 68R10

Introduction
The shortest path problem with real(positive or negative)weights is the problem of
finding the shortest distance from a specified vertex to all the vertices in the graph.
Negative edge weights arise in a natural way when we reduce other problems to
shortest-path problems. Negative weights are not merely a mathematical curiosity, on
the contrary, they significantly extend the applicability of the shortest-path problems
as a model for solving other problems. This potential utility is our motivation to
search for efficient algorithms to solve network problems that involve negative
weights. The negative cycle problem is to find a negative length cycle in a network or
to prove that there are none. The Negative Cycle Detection problem has numerous

308 Saranya C.R. and Shobhalatha G.

applications in scheduling, circuit production, constraint programming and image
processing. For example, in some linear programming applications with constraints of
the form ݔ െ ݔ ܾ called difference constraints, the problem has feasible solution
if and only if the corresponding constraint graph has no negative cycle.
 The previously known algorithms for the problem are based on the famous
Bellman –Ford – Moore(BF) [1, 6, 10] algorithm whose time bound is O(nm), where
n is the number of vertices and m is the number of edges. With the additional
assumption that arc lengths are integers bounded below by െܰ െ2, the bound
O(√݊ m log N) of Goldberg [8] improved the Bellman-Ford-Moore bound for very
large N, where N is the absolute value of most negative arc length. The Goldberg -
Radzik algorithm [7], an incremental graph algorithm of Pallottino [11], an algorithm
of Tarjan[12] all perform well on some classes of shortest path problems. C-H. Wong
and Y-C Tan [5] gave some heuristics that can be used to improve the runtime of a
wide range of commonly used algorithms for the negative cycle detection problem
significantly, such as Bellman – Ford - Tarjan algorithm, Goldberg - Radzik algorithm
and Bellman-Ford-Moore algorithm with Predecessor Array. It runs in O(݊ଶm) worst-
case time. An O(n)-pass algorithm, called robust Dijkstra (RD) with bucket
implementation and heap implementation was proposed by Cherkassky B.V. et.al.[3]
which performed better than Wong and Tan’s methods on many of the classes of
graphs.
 Every labeling algorithm terminates after a certain number of labeling operations
in the absence of negative cycles. If this number is exceeded, we can stop and declare
that the network has a negative cycle. This strategy is called time out strategy. Our
algorithm takes in to account the number of times a particular vertex becomes the
scanning vertex. If this number exceeds 2 we declare that the graph has negative
cycle. When the labeling operation is applied on an arc (u, v), the walk to root
strategy follows the parent pointers from u until it reaches v or s. If we stop at v, then
it declares the presence of negative cycle. Our algorithm uses this strategy and
whenever it reaches v or s, it checks for the distance of v and s, we declare the
presence of negative cycle of distance of s is less than zero or if v becomes the
scanning vertex for the third time. At each iteration our algorithm has the information
about the vertex with the minimum distance among all the scanned and labeled
vertices.

Definitions and Algorithmic Preparations
Given a weighted directed graph G=(V,E), with V[G] the vertex set and E[G] the edge
set,a weight function and a function ݓ : E ՜R, mapping edges to real-valued
weights. The shortest path problem is the problem of finding shortest distances from a
specified vertex to all other vertices. The weight of the path p =(ݒ, ,ଵݒ … , ሻ is theݒ
sum of the weights of its constituent edges:

 wሺpሻ ൌ ∑ w ሺv୧ିଵ, v୧ሻ୩
୧ୀଵ

A Faster Negative Cycle Detection Algorithm 309

 The shortest path weight from a vertex u to v is defined by

,ݑሺߜ ሻݒ ൌ ቄmin ሺwሺpሻሻ if there is a path from u to v.
∞ otherwise

 A shortest path from vertex u to vertex v is then defined as any path with weight
w(p)=δ(u, v).
 For a given graph G = (V, E), the shortest path is represented using π[v] which
maintains the predecessor of vertex v. π[v] is either another vertex or NIL.
Predecessor subgraph, ܩగ ൌ ሺܸߨ, ሻ induced by the π values gives the shortestߨܧ
path tree. Where ܸߨ is the set of vertices with non-NIL predecessors, plus the source
and ߨܧ is the directed edge set induced by the π values for vertices in ܸߨ.
 The process of relaxing an edge (u,v) consists of testing whether we can improve
the shortest path to v found so far by going through u and, if so, updating d[v] and
π[v]. If d[v] is greater than d[u] + w(u,v), then this process sets d[v] to d[u]+w(u,v)
and updates π[v] to u.
 For every vertex v, the algorithm maintains the following (i) distance from the
source to v denoted by d[v] (ii) distance of a particular vertex in the previous iteration
denoted by pd[v] (iii) the parent or the predecessor of the vertex v denoted by π[v]
and (iv) the number of times a particular vertex has been scanned denoted by ns[v].
 In addition, the algorithm puts all the vertices that have been newly labeled in a
particular iteration in the set ‘Labeled-New’ and all the vertices which were labeled in
the previous iterations are included in the set ‘Labeled-Old’.
 In the next section we discuss the structure of the algorithm and give the proposed
algorithm, the step by step analysis of the algorithm followed by proofs for
correctness of the algorithm are done in section 3 and in the last section we compare
the new algorithm with few well known algorithms.

O(ሻ Algorithm
The Algorithm works as follows:

1. It starts with initialization of d[v] and pd [v] to ∞, π[v] to Nil and ns[v] to 0.
2. The iteration procedure starts with d[s] set to 0, a variable source assigned as s

and the two sets Labeled-Old and Labeled-New set to Empty.
3. The For loop runs 2|ܸሺܩሻ| times, each time the loop is executed it does the

following It checks for ns[source]2 or d[s]൏0. If either of them is satisfied
the algorithm terminates as it has found the negative cycle. Otherwise, it starts
labeling the other vertices only if it’s distance in the previous iteration or it’s
previous distance is greater than the newly evaluated distance. At the end of
every iteration the vertex with the minimum of all the distances is made the
source for the next iteration. Once the set Labeled-Old becomes empty at the
end of any iteration the algorithm terminates as it has obtained the solution.

310 Saranya C.R. and Shobhalatha G.

Algorithm
1. START
2. For each ݒ א ሿܩሾݒ
3. do d[v] ՚ ∞
4. pd[v] ՚ ∞
5. π[v] ՚NIL
6. ns[v] ՚ 0
7. End For
8. d[s] ՚0
9. source՚ s
10. Labeled-New ՚ Empty
11. Labeled-Old՚ Empty
12. For i ՚1 to 2|ܸሺܩሻ|
13. do ns[source] ՚ ns[source]+1
14. min-d-old ՚ ∞
15. if (ns[source] > 2 OR d[s] < 0)
16. then display “NEGATIVE CYCLE DETECTED”
17. Exit Loop and STOP
18. End if
19. For each v א Adj[source]
20. do pd[v] ՚ d[v]
21. if d[v] d[source] + w(source,v)
22. then d[v] ՚ d[source] + w(source,v)
23. π[v] ՚source
24. End if
25. if pd[v] > d[v]
26. then Labeled-New ՚ Labeled-New ሼvሽ
27. Labeled-Old ՚ Labeled-Oldെሼvሽ
28. min-d-new ՚ d[v]
29. min-v-new ՚ v

30.
else min-d-new ՚ ∞

 31. if(min-d-new < min-d-old)
32. then min-d-old ՚ d[v]
33. min-v-old ՚ v
34. End if
35. End For
36. if (min-v-old = source)
37. then ns[source] ՚ ns[source] െ1
38. i՚ iെ1
39. End if
40. For each v א

Labeled-Old

41. do if (min-d-old > d[v])
42. then min-d-old՚ d[v]
43. min-v-old ՚ v

A Faster Negative Cycle Detection Algorithm 311

44. End if
45. End For
46. source ՚ min-v-old
47. Labeled-Old ՚ Labeled-Old Labeled-New ←
48. Labeled-New ՚ Empty
49. if (Labeled-Old = Empty)
50. then display “SOLUTION FOUND”
51. Exit loop and STOP
52. End if
53. Labeled-Old ՚ Labeled-Old െሼ݁ܿݎݑݏሽ
54. End For
55. STOP

Analysis of the algorithm
Lines 2 -7 initializes the values d[v],pd[v],π[v] and ns[v] for every vertex v in V. This
takes O(n) time, where n is the number of vertices in G. As the iteration starts, say in
݅௧

iteration, the vertices labeled are put in the set Labeled-New and these vertices are
mixed with those in Labeled-Old ݅ 1௧ iteration. There is total of 2n iterations given
by the for loop in line 12, min-d-old(minimum distance in previous iteration) is a
variable that is introduced in line 14 to hold the minimum distance from the source to
the vertex v, that will be scanned in the next iteration. At the beginning of each
iteration this variable is set to ∞ so that the minimum of the newly labeled vertices
can be found, it will give the correct minimum distance at the end of the iteration.
 The algorithm checks for the situations where either, the number of times a
particular vertex is scanned exceeds 2 or the distance of the source becomes less than
0. When either of this is satisfied, a ‘negative cycle has been detected’ and the
algorithm stops. The case where these conditions are not satisfied, then we proceed to
the first inner ‘for loop’, for each vertex adjacent to the vertex being scanned we have
one iteration. At the beginning of the iteration, before d[v] undergoes a change it is
saved in pd[v], as the previous distance. The edge (source,v) is relaxed. After
relaxation process, if there is any change in d[v], that is if it has lost some distance
then it can become a scanning vertex again. If there is no change in d[v] after
relaxation then the variable min-d-new (minimum distance in the current iteration) is
set to ∞, this ensures that the value of min-d-new of the previous iteration is not
carried forward, and the variable is min-v-new (vertex at minimum distance from
source in the current iteration) is not updated.
 After the complete execution of the first inner for loop, the second inner for loop
starts at the end of which the minimum of all the labeled vertices can be obtained and
stored in min-d-old and the corresponding vertex is stored in min-v-old(vertex at a
minimum distance from source in the previous iteration). Now, the next vertex to be
scanned is given by min-v-old and it is assigned to the variable source. The newly
scanned vertices are combined with those in the Labeled-Old set, this new set now
becomes the Labeled-Old set for the next iteration. When all the vertices have
obtained the correct label, which happens in the absence of negative cycle, the set

312 Saranya C.R. and Shobhalatha G.

Labeled-Old becomes empty, when it is satisfied, the solution is reached and the loop
is exited. The inner for loops put together run n-1 times, because those vertices which
are in Labeled-New does not belong Labeled-Old, in the worst case the total number
of times the inner loops run is (n-1) times. The outer for loop runs 2n number of
times. Hence the algorithm runs in O(݊2) time.

Proof of Correctness
Lemma 3.1: Let G be a graph with source ‘s’, after a finite number of labeling
operations if d[s]൏0 then G contains a negative cycle.

proof:
Let us observe that the parent of any vertex has a finite distance label and all vertices
with finite distance label has parents except for the source s. The source s can have a
parent if and only if d(s) ൏0. Suppose d[s] ൏0, we shall prove that the graph has a
negative cycle reachable from s. Since there is a path from source to any vertex in G,
thus there is a path from source s to π[s],say p, since π is the parent of s, the path p
along with the edge(π[v],s) forms a cycle in G. If lis the length of the path from s to
π[s], let us name the vertices on the path as ݒ, ,ଵݒ … , is the source s andݒ whereݒ
 is the vertex π[s]. The vertex vl became the parent of s after the relaxation of theݒ
edge (ݒ , ݒ), so d[s] is nothing but d[ݒ]+ w(ݒ , ݒ).
 Since d[s] < 0
 d[ݒ]+ d[ݒିଵሿ + w(ݒିଵ,)<0. (1)ݒ

now ݒିଵ is the parent of ݒ , d[ݒ ሿ is d[ݒିଵሿ + w(ݒିଵ,), thus (1) becomesݒ
 d[ݒିଵሿ + w(ݒିଵ, 0 > (ݒ , ݒ))+ wݒ

continuing in this way, we get,
 wሺݒ , ଵሻݒ wሺݒଵ , .ଶሻݒ . . wሺݒିଵ, ሻݒ wሺݒ , ሻݒ ൏ 0

that is,
 ∑ ,ିଵݒሺ ݓ ሻାଵݒ

ୀଵ ൏ 0 where ݒାଵ ൌ ݒ

 The weight of the cycle is negative. Hence the proof.

Lemma 3.2: Let G be a graph with source ‘s’, for any v ്s, if v becomes a scanning
vertex more than twice, that is if ns[v] > 2 then G contains a negative cycle.

Proof: Let us assume that ݒ is the vertex which becomes the scanning vertex for the
third time and assume it is not in a negative cycle. Let ݒbe in a cycle. Let l be the
length of the cycle, and ݒ, ,ଵݒ … , , thenݒ = ݒ are the vertices in the cycle whereݒ
the weight of the cycle is given by ∑ ,ିଵݒሺ ݓ ሻݒ

ୀଵ . Assume that

 ∑ ,ିଵݒሺ ݓ ሻݒ
ୀଵ 0

 When the cycle is traversed for the second time starting from v0, when it reaches

A Faster Negative Cycle Detection Algorithm 313

the vertex ݒ, d[ݒሿ is compared with d[ݒሿ+ ∑ ,ିଵݒሺ ݓ ሻݒ
ୀଵ . Since the weight of

the cycle is positive, we have

 d[ݒሿ ൏ d[ݒሿ+ ∑ ,ିଵݒሺ ݓ ሻݒ
ୀଵ

 Hence, d[ݒሿ does not undergo any change once it reaches the minimum, which is
a contradiction to the fact that it becomes the scanning vertex for the third time and it
is not in a negative cycle. So ݒis in a negative cycle. Hence the proof.

Theorem 3.3: Given a weighted graph G=(V,E), in 2n iterations the algorithm either
detects a negative cycle or gives a shortest path.

Proof: From Lemma 3.2, it is clear that a vertex can be scanning vertex at most twice,
and from Lemma 3.1 if source becomes a scanning vertex then there must be a
negative cycle. Therefore each vertex can become a scanning vertex only twice,
excluding the sink or destination. Hence in 2n iterations either one of the conditions
stated in lemma 3.1 or lemma 3.2 gets satisfied in the presence of a negative cycle. In
the absence of a negative cycle, the solution is obtained within the 2n iterations.

Examples
The algorithm was applied on the following problem from the book ‘Introduction to
Algorithms,by Cormen, T. H.,et.al.(2001)[4]. The first problem is finding shortest
path in the graph shown in fig.1. This graph does not contain a negative cycle and the
result obtained after implementing the new algorithm was found to be correct.
 The second problem is finding shortest path in the graph shown in fig.2. This
graph does contain a negative cycle and the algorithm could detect the negative cycle
in 7 iterations of the outer For loop.

Figure 1: Network with Negative weights.

314 Saranya C.R. and Shobhalatha G.

Figure 2: Network with Negative Cycle.

Comparison with few algorithms
In this section we compare the worst case time bounds of the few existing algorithms
with the new algorithm. We have chosen few arbitrary values for n,m and N, where N
is the absolute value of the most negative edge weight. The Bellman Ford Algorithm
runs in O(nm) time, the algorithm by A.V.Goldberg runs in O(√݊ m log N) time. The
algorithm given in this work has O(n

2
) bound. The following table gives the

comparison between the above mentioned algorithms, where we have found the worst
case time for the algorithms, in practice these algorithm can even take lesser time than
the evaluated values to produce the result.
 Here BF represents the Bellman-Ford algorithm. Observe that for the networks
where, m is greater than or equal to 2n, the new algorithm is always faster than
Bellman-Ford algorithm. When compared with Goldberg algorithm, we see that, as
given in the second case (*), the new algorithm is a better one only when the value of
N is very large. But, for the cases were m is much larger than n, the new algorithm is
faster than the other algorithms.

Table 1: Relative performance of BF, Goldberg and the new algorithm.

S. No. n m N BF(nm) Goldberg (√n m log N) New Algorithm (n2)
1 5 10 15 50 26.2982 25
2 50 150 *250 7500 2543.3995 2500
3 500 25000 4 12500000 336561.7668 250000
4 8193 24576 5 201351168 1554859726 134234112
5 16386 65537 3 1073889282 4002688528 536969220

A Faster Negative Cycle Detection Algorithm 315

Concluding Remarks
In this work we have introduced a negative cycle detection algorithm. We have shown
by numerical examples that for reasonable sized graphs our algorithm outperforms the
existing algorithms. We have compared our algorithm against the most efficient
alternative like Goldberg’s algorithm. The numerical examples suggest that the
algorithm outperforms the other algorithms only under the conditions that either the
number of edges ‘m’ is much larger than the number of vertices ‘n’ or the absolute
value of most negative arc length ‘N’ is very large. This work can be extended to
obtain a better algorithm which would overcome these limitations.

References

[1] Bellman, R. E., 1958, “On a routing problem”, Quarterly of Applied
Mathematics, 16, pp.87-90.

[2] Cherkassky, B. V., Goldberg, A. V., and Radzik, T., 1996, “Shortest Paths
Algorithms: Theory and Experimental Evaluation”, Math. Prog., 73, pp 129-
174.

[3] Cherkassky, B. V., Loukas Georgiadis, Goldberg, A.V., Tarjan, R. E.,
Werneck, R. F., 2009, “Shortest Path Feasibility Algorithms: An Experimental
Evaluation”, J. Experimental Algorithmics (JEA), 14, section 2, article no.7.

[4] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2001, Introduction to
Algorithms, Second edition, MIT Press/McGraw-Hill.

[5] C-H. Wong and Y-C Tam, 2005, “Negative Cycle Detection Problem”, Proc.
13th Annual European Symposium on Algorithms, pp. 652663.

[6] Ford, L.R. and Fulkerson, D.R., 1962, Flows in Networks, Princeton
University,Princeton, NJ.

[7] Goldberg, A.V., Radzik, T., 1993, “A heuristic improvement of the Bellman-
Ford algorithm”, Applied Math. Lett. 6, pp 3 -6.

[8] Goldberg, A.V., 1995, “Scaling algorithms for the shortest paths problem”,
SIAM J. Comput. 24, pp 494 -504

[9] Goldfarb, D., Hao, J., Kai, S.-R., 1991, “Shortest path algorithms using
dynamic breadth-first search”, Networks 21, pp.29 -50.

[10] Moore, E.F.,1959,“ The shortest path through a maze”, Proceedings of an
International Symposium on the Theory of Switching, pp. 2-5 April 1957, Part
II [The Annals of the Computation Laboratory of Harvard University Volume
XXX] (H. Aiken, ed.), Harvard University Press, Cambridge, Massachusetts,
pp. 285 -292.

[11] Pallottino, S., 1984, “Shortest-Path methods: complexity, interrelations and
new propositions”, Networks 14, pp.257 -267.

[12] Tarjan, R.E., 1981, Shortest Paths. Technical report, AT and T Bell
Laboratories, Murray Hill, NJ

