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Introduction 
In the analysis of mixed boundary value problems, we often encounter pairs of dual 
integral equation of the form. 

(1.1) 
0

∞

∫ k1(x, u) A(u) du=λ (x), 0 ≤ x < 1 

(1.2) 
0

∞

∫ k2(x, u) A (u) du=µ(x), x >1 

 
 Where k1 and k2 are the Kernels defined over the whole x-u plane and the function
λ  (x) and µ(x) are defined on [0, 1] and (1, ∞ ) respectively. 
 Various problems of this type, have been considered by many authors taking the 
kernels ki as Bessel function υJ  (x) classical polynomials and generalised 
hypergeometric functions like G and H etc. 
 Recently the classical polynomials have been generalised in different ways. 
 Hence, it is worth considering the solution of dual integral equations which 
involve such generalised functions as Kernels. 
 In the present paper we propose to consider the following pair of dual integral 
equations. 

(1.3)   

(1.4)  

 
where h(x) and g(x) are known, f(x) is to be determined, and r

nF (x, a, k, p) are 
gerneralised functions of Chatterjea [1], defined by Rodrigue’s Formula. 

( )
r1a -(xy ) r

n 1 1xy e F (x y;a ;k ;1 ) f (y )d y= h(x) ;   0 x < 1≤
0

∞

∫
 

( ) r2a -(xy) r
n 2 2x y e F (x y;a ;k ; 1)  f(y) dy  =  g (x );  1 x<≤ ∞

0

∞

∫
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(1.5)   

 
k, r, a and p are parameters. 
 
 To solve the equation (1.5) and (1.4) we shall use the theory of fractional 
Integration operators and Mellin transform to reduce the pair of equations into a 
single integral equation and finally we shall invert it. 
 
 
Mellin Transform and Fractional Integration Operatos 
The Mellin transform f* (s) of a function f(x) is defined by relation [6]. 

(2.1) f*(s) = M [f(x)] = 
0

∞

∫ f(x) xs-1 dx,  

where s= +iσ τ  is a complex veriable. 
 
 The inverse Mellin transform of f*(s) is f(x) and is given by  

(2.2) 
σ+i-1 * * -s

σ-i

1M f (s)  = f(x) = f (s) x ds,
2πi

∞

∞
⎡ ⎤⎣ ⎦ ∫  

 
 If k*(s) and f*(s) denote the Mellin transform of k(x) and f(x) respectively, then 
[6] 

(2.3)  ( ) ( ) ( ) ( )* *

0

M K xy  f y  dy : s  k s  f 1 s   
∞⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∫   

 
  Thus from (2.3) we have  

(2.4) ( ) ( ) ( ) ( )1 * *K xy  f y  dy    k s  f 1 s  ;
0

M x
∞ − ⎡ ⎤= −∫ ⎢ ⎥⎣ ⎦

 

                                 1 * *( ) (1 ) ;
2

sk s f s x ds
i Lπ

−= −∫  

 
where L is the suitable counter. 
 
  Now take 
(2.5)  

r
i ia +k n -x r

i n i ,k (x) = x  e  F  (x, a; k ;1),  i = 1,2-------  
 
 
 
 

r rr -a p x n a + k n - p x
n

dF ( x ,  a ,  k ,  p )  =  x  e D x e ,  D
d x

⎡ ⎤ ≡⎣ ⎦
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then from Erdelyi [2] 

(2.6) *
ik ( )s  =

i i
1s ( (s-n+a +k n))
r

(s-n)
 

 
 Hence by use of (2.4), (1.3) and (1.4) can be written as 

(2.7)  

 
and 

(2.8)  

 
 Fractional integral operators, that we shall use are, given below [3] 

(2.9) 
-r +r-β-1 xrx βr r -1τ( ;β;r;w(x))=  (x -v )  w(v)dv ;

( ) 0
v

α
αα

α
∫  

 
and  

(2.10) R (α ;β; r; w(x)) =   

 
 For r=1, these operators reduce to those studied by Kober 
 
 
Solution of the problem 
We operate (2.8) by (2.10), choosing α  = 1

r
 (a2-a1+k2n-k1n) and β =a1+k1n-n, so that 

(2.8) changes to 

(3.1)  

   
 
 

1
2r iπ L

∫ 1 1
* -s

1s ( (s-n+a +k n))
r f (1-s) x ds = h(x); 0 x <1

(s-n)
≤

 

1
2r iπ L

∫ 2 2
* -s

1s ( (s-n+a +k n))
r f (1-s) x ds = g(x); 1 x<

(s-n)
≤ ∞

 

β
r r -1 -β-r +r-1

x

rx (v -x )  v  w(v)dv.
( )

α α

α

∞

∫

1 a +k n-ns ( (s-n+a +k n)) 1 11 rx1 1 -s *r x  f (1-s)ds = 
2 (s-n) 1( (a -a +k n-k n))2 1 2 1r

r i Lπ ∫

 

r r -1 -β-r +r-1

x

(v -x )  v  g(v) dv,α α
∞

∫
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 Now, put  

(3.2)   

 
 Then from (2.7), (3.1) and (3.2), we get. 

(3.3)   

 
again using (2.4) and (2.6), (3.5) becomes. 

(3.4) ( ) ( ) ( )1
0

k xy  f y dy  t x ;  0 x
∞

= ≤ < ∞∫  

 
 Thus the pair of dual integral equations (1.1) and (1.2) have been reduced to single 
integral equation (3.4). 
 
 By Mellin transform, (3.3) can be written as  
(3.5) K*(s) f*(1-s) = T* (s) 

(3.6)  where K* (s) = 
1 1

1  s ( (s-n+a +k n))
r

(s-n)
  

 
and T*(s) =is the Mellin transform of t(x)  
 
 Now replacing s by 1-s, in (3.5) we get  
(3.7) f*(s) = L*(s) T*(1-s) 

(3.8) where L* (s) = 
( )
1

* 1k s−
 =  

1 1

(1-s-n)
1(1-s) ( (1-s-n+a +k n))
r

  

 
 Now taking inverse Mellin transform of  

(3.9)  f(x) = 
0

∞

∫ L(xy)) t (y)dy  
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 Where  

(3.10) 

1 1(1,1) (( (1-n+a +k n), )1 11,0 r rL(x)=H x2,1 (1-n,1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
and we get 

(3.11) 

1 1(1,1) ( (1-n+a +k n), )1 1 11,0 r rf(x) = H  x  t(y) dy,2,1 (1-n,1)r 0

⎡ ⎤⎛ ⎞
∞ ⎢ ⎥⎜ ⎟

⎢ ⎥∫ ⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  

 
where t(y) is given by (3.2) and m,n

p+n,q+mH  are fox’s H- Function defined by, [5] 

(3.12) 
(a ,α )-----------(a α ) 11 1 n+p, n+pm,n sH x = θ(s)x ds,p+n,q+m (b ,β )-----------(b β ) 2πω1 1 m+q, m+q L

⎡ ⎤
⎢ ⎥ ∫
⎢ ⎥
⎣ ⎦

  

 
 Where ω  = 1− , x ≠ 0 is a complex veriable and  

 
(a ,α )-----------(a α ) 11 1 n+p, n+pm,n sH x = θ(s)x ds,p+n,q+m (b ,β )-----------(b β ) 2πω1 1 m+q, m+q L

⎡ ⎤
⎢ ⎥ ∫
⎢ ⎥
⎣ ⎦

 

 
m, n, p and q are non - negative integers; 
 α  j (j = 1---------n+p) and βj ( j = 1---------- m + q). 
 
 Thus we have proved the following. 
 
Theorem: If f(x) is an unknown function satisfying (2.7) and (2.8), where h(x) and 
g(x) are some known function, then is given by (3.11) 
 
 
References 
 

[1] Chatterjea S.K. (1966):- Some operational formulas connected with a function 
defined by generalized Rodrigue’s formula; Acta Math, 17, 3-4, 379-385. 

[2] Erdeli A. atc. (1954):- Tables of integral transforms; vol.1; MC. graw hill, New 
York. 

[3] Erdely 1 A (1950-51):- On some functional transformation Univ, Politec. 
Torino Rend.Sem. Mat.10, 217.-234. 

[4] Kober, H.(1940):-On fractional integrals and derivative, Quart. J. Math Oxford 
Ser.11, 193, -211. 



382  Archana Lala 
 

 

[5] Shrivastava, H.M, Gupta K.C. and Goyal S.P. (1982):-The H function of one 
and two variable with application; South Asian Publishers, New Delhi, India. 

[6] Sneddon, I, N.(1974):- The use of Integral Transform; Tata-Mc-Grew H. Pusl. 
Co. Ltd. New Delhi, India. 


