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Abstract 
 

The thermal instability of a couple-stress fluid acted upon by uniform vertical 
rotation and heated from below is investigated. Following the linearized 
stability theory and normal mode analysis, the paper through mathematical 
analysis of the governing equations of couple-stress fluid convection with a 
uniform vertical rotation for the case of rigid boundaries shows that the 
complex growth rate σ  of oscillatory perturbations, neutral or unstable for all 
wave numbers, must lie inside a semi-circle  

   ( )42 πσ −= AT ,  
 

in the right half of a complex σ -plane, which prescribes the upper limits to 
the complex growth rate of arbitrary oscillatory motions of growing amplitude 
in a rotatory couple-stress fluid heated from below. 
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Introduction 
Right from the conceptualizations of turbulence, instability of fluid flows is being 
regarded at its root. The thermal instability of a fluid layer with maintained adverse 
temperature gradient by heating the underside plays an important role in Geophysics, 
interiors of the Earth, Oceanography and Atmospheric Physics etc. A detailed account 
of the theoretical and experimental study of the onset of Bénard Convection in 
Newtonian fluids, under varying assumptions of hydrodynamics and hydromagnetics, 
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has been given by Chandrasekhar [ ]3 . The use of Boussinesq approximation has been 
made throughout, which states that the density changes are disregarded in all other 
terms in the equation of motion except the external force term. Sharma et al [ ]7  has 
considered the effect of suspended particles on the onset of Bénard convection in 
hydromagnetics. The fluid has been considered to be Newtonian in all above studies. 
With the growing importance of non-Newtonian fluids in modern technology and 
industries, the investigations on such fluids are desirable. Stokes [ ]11  proposed and 
postulated the theory of couple-stress fluid. One of the applications of couple-stress 
fluid is its use to the study of the mechanism of lubrication of synovial joints, which 
has become the object of scientific research. According to the theory of Stokes [ ]11 , 
couple-stresses are found to appear in noticeable magnitude in fluids having very 
large molecules. Since the long chain hylauronic acid molecules are found as 
additives in synovial fluid, Walicki and Walicka [ ]12  modeled synovial fluid as 
couple-stress fluid in human joints. An electrically conducting couple-stress fluid 
heated from below in porous medium in the presence of uniform horizontal magnetic 
field has been studied by Sharma and Sharma [ ]10 . Sharma and Thakur [ ]8  have 
studied the thermal convection in couple-stress fluid in porous medium in 
hydromagnetics. Sharma and Sharma [ ]9  and Kumar and Kumar [ ]4  have studied the 
effect of dust particles, magnetic field and rotation on couple-stress fluid heated from 
below and for the case of stationary convection, found that dust particles have 
destabilizing effect on the system, where as the rotation is found to have stabilizing 
effect on the system, however couple-stress and magnetic field are found to have both 
stabilizing and destabilizing effects under certain conditions.  
 Banerjee et al [ ]2  gave a new scheme for combining the governing equations of 
thermohaline convection which is shown to lead to bounds for the complex growth 
rate of the arbitrary oscillatory perturbations, neutral or unstable for all combinations 
of dynamically rigid or free boundaries. Keeping in mind the importance of non-
Newtonian fluids, the present paper is an attempt to prescribe the upper limits to the 
complex growth rate of arbitrary oscillatory motions of growing amplitude, in a layer 
of incompressible couple-stress fluid heated from below in the presence of uniform 
vertical rotation opposite to force field of gravity, when the bounding surfaces of 
infinite horizontal extension, at the top and bottom of the fluid are rigid.  
 
 
Formulation of the Problem and Perturbation Equations 
Considered an infinite, horizontal, incompressible couple-stress fluid layer, of 
thickness d, heated from below so that, the temperature and density at the bottom 
surface z = 0 are 0T , 0ρ  respectively and at the upper surface z = d are dT , dρ  and that 

a uniform adverse temperature gradient ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dz
dTβ  is maintained. The fluid is acted 

upon by a uniform vertical rotation ( )ΩΩ
→

,0,0 . Let ρ , p, T and ( )wvuq ,,
→

 denote 
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respectively the density, pressure, temperature and velocity of the fluid. Then the 
momentum balance, mass balance equations of the couple-stress fluid (Stokes [ ]11 ; 
Chandrasekhar [ ]3  and Scanlon and Segel [ ]5 ) are 

 ⎟
⎠
⎞
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⎛ Ω×+∇⎟⎟

⎠
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t
q 211. 22
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'

00 ρ
μν

ρ
δρ

ρ
,  (1)  

 0. =∇
→

q ,  (2) 
 
 The equation of state  

 ( )[ ]00 1 TT −−= αρρ ,  (3) 
 Where the suffix zero refer to the values at the reference level z = 0. Here 

( )gg −
→

,0,0  is acceleration due to gravity. 
 Let ptv cc ,  denote the heat capacity of the fluid at constant volume and the heat 
capacity of the particles. Assuming that the particles and the fluid are in thermal 
equilibrium, the equation of heat conduction gives 

 TqTq
t

cv
2

0 . ∇=⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂ →→

ρ , 

 
Or 

 TTq
t
T 2. ∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇+

∂
∂ →

κ ,  (4) 

 
 The kinematic viscosityν , couple-stress viscosity 'μ , thermal diffusivityκ , and 
coefficient of thermal expansionα  are all assumed to be constants. 
 The basic motionless solution is 

  ( )0,0,0=
→

q  , zTT β−= 0 , ( )Ω=Ω
→

,0,0  and ( )zαβρρ += 10 .  (5)  
 
 Assume small perturbations around the basic solution and let δρ  , pδ , θ  and 

( )wvuq ,,
→

 denote respectively the perturbations in density, pressure p, temperature T 
and couple-stress fluid velocity (0,0,0) . The change in density δρ  caused mainly by 
the perturbation θ  in temperature is given by 

 θαρδρ 0−= .  (6) 
 
 Then the linearized perturbation equations of the couple-stress fluid becomes 
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 Where 
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q

0ρ
κ =  . 

 
 Within the framework of Boussinesq approximation, equations (7) and (8), give 
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 Together with (9), where 2
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denote the z-component of vorticity. 
 
 
Normal Mode Analysis  
Analyzing the disturbances into normal modes, we assume that the Perturbation 
quantities are of the form 

 [ ] ( ) ( ) ( )[ ]zZzzWw ,,,, Θ=ςθ  Exp ( )ntyikxik yx ++   (12)  
 
 Where yx kk ,  are the wave numbers along the x and y-directions respectively 

( )2
1

22
yx kkk += , is the resultant wave number and n is the growth rate which is, in 

general, a complex constant. 
 Using (12), equations (9), (10) and (11), on using (8), in non-dimensional form, 
become 

 ( ) ( ) ( )[ ] dDZTadgWaDaDFaD A−
Θ

−=−−−+−
ν

ασ
22

2222222 ,  (13)  
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 ( ){ }( )[ ] DW
d
TZaDaDF A−=−−−− σ22221 ,  (14) 

 ( ) WdpaD
κ
βσ
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1
22 −=Θ−− ,  (15) 
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νρ

μ
κ
ν

ν
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,,,
d

Fpndkda ==== , 2

422
ν

dTA
Ω

=  
dz
dD = and dDD =⊕  and 

dropping ( )⊕  for convenience. Here ,1 κ
ν

=p is the thermal prandtl number, F is the 

couple-stress parameter and AT  is the Taylor number.  

 Substituting ⊕=WW , ⊕Θ=Θ
κ
β 2d and ⊕= Z

d
TZ A  in equations (13), (14) and 

(15) and dropping ( )⊕  for convenience, in non-dimensional form becomes, 

 ( ) ( ) ( )[ ] DZTRaWaDaDFaD A−Θ−=−−−+− 22222222 σ ,  (16) 

 ( ){ }( )[ ] DWZaDaDF −=−−−− σ22221 ,  (17) 

 ( ) WpaD −=Θ−− σ1
22 ,  (18) 

 

 Where
κν
αβ 4dgR = , is the thermal Rayleigh number. 

 Since both the boundaries rigid and are maintained at constant temperature, the 
perturbations in the temperature are zero at the boundaries. The appropriate boundary 
conditions with respect to which equations (16), (17) and (18) must be solved are 
 W = DW = 0, 0=Θ  and Z = 0 at z = 0 and z = 1.  (19) 
 
 Equations (16)-(18), along with boundary conditions (19), pose an eigenvalue 
problem for σ  and we wish to Characterize iσ  when 0≥rσ . 
 We prove the following theorem: 
 
Theorem: If R 〉 0 , F 〉 0, 〉AT 0, 0≥rσ  and 0≠iσ  then the necessary condition for 
the existence of non-trivial solution ( )ZW ,,Θ  of equations (16), (17) and (18) 
together with boundary conditions (19) is that 
  ( )42 πσ −〈 AT  .  
 
Proof: Multiplying equation (16) by ∗W  (the complex conjugate of W) throughout 
and integrating the resulting equation over the vertical range of z, we get 

 ( ) ( ) ( ) ∫∫∫∫∫ ∗∗∗∗∗ −Θ−=−−−+−
1
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2222
1

0

1
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322
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22 DZdzWTdzWRaWdzaDWWdzaDWFWdzaDW Aσ ,  (20) 
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 Taking complex conjugate on both sides of equation (18), we get 

 ( ) ∗∗∗ −=Θ−− WpaD σ1
22 ,  (21) 

 
 Therefore, using (21), we get  

  ( )∫ ∫ ∗∗∗ Θ−−Θ−=Θ
1

0

1

0
1

22 dzpaDdzW σ ,  (22) 

 
 Also taking complex conjugate on both sides of equation (17), we get 
 ( ){ }( )[ ] ∗∗∗ −=−−−− DWZaDaDF σ22221 ,  (23) 
 
 Therefore, using (23), we get  

 ( ) ( ){ }∫ ∫∫ ∗∗∗∗ −−−−=−=
1

0
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0
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0

dzZaDFaDZZdzDWDZdzW σ ,  (24) 

 
 Substituting (22) and (24) in the right hand side of equation (20), we get 

 ( ) ( ) ( ) WdzaDWWdzaDWFWdzaDW 222
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 Integrating the terms on both sides of equation (25) for an appropriate number of 
times by making use of the appropriate boundary conditions (19), along with (17), we 
get  
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 And equating imaginary parts on both sides of equation (26), and cancelling 

)0(≠iσ  throughout from imaginary part, we get 
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 We first note that since W  and Z  satisfy )1(0)0( WW ==  and )1(0)0( ZZ ==  
in addition to satisfying to governing equations and hence we have from the Rayleigh-
Ritz inequality[ ]6   

 ∫∫ ≥
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2 dzWdzDW π ,  (28) 

 
and  

 ∫∫ ≥
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0

22
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 Further, for )1(0)0( WW == and )1(0)0( ZZ == , Banerjee et al. [ ]1  have shown 
that 
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 Further, multiplying equation (17) and its complex conjugate (23), and integrating 
by parts each term on both sides of the resulting equation for an appropriate number 
of times and making use of boundary condition on Z  namely )1(0)0( ZZ ==  along 
with (17), we get 
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 Now F 〉  0 and 0≥rσ , therefore the equation (31) gives, 

 ∫∫∫ 〈+
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 And on utilizing the inequalities (29) and (30), inequality (32) gives 
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 Now R 〉  0 and 〉AT  0, utilizing the inequalities (33), the equation (27) gives,  

  ( ) ∫ ∫∫ Θ++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

1

0

1

0

2
1

222
1

0

2
24

1 dzpRadzWadzDW
TA

σπ
〈 0,  (34)  

 
and therefore , we must have 

  ( )42 πσ −〈 AT .  (35) 
 
 Hence, if 

  0≥rσ  and 0≠iσ , then ( )42 πσ −〈 AT .  
 
 And this completes the proof of the theorem. 
 
 
Conclusions 
The essential content of the theorem, from the point of view of linear stability theory 
is that for the configuration of couple-stress fluid of infinite horizontal extension 
heated form below, having top and bottom bounding surfaces rigid, in the presence of 
uniform vertical rotation parallel to the force field of gravity, the complex growth rate 
of an arbitrary oscillatory motions of growing amplitude, lies inside a semi-circle in 
the right half of the rσ iσ  - plane whose centre is at the origin and radius is 

( )4π−AT . 
 Further, it follows from inequality (35) that a sufficient condition for the validity 
of the ‘principle of exchange of stabilities’ in rotatory couple-stress fluid convection 

is that the non-dimensional number ( ) 14 ≤
π

AT
. It is therefore clear that the existence of 

oscillatory motions of growing amplitude in this problem depends crucially upon the 

magnitude of the non-dimensional number ( )4π
AT

, in the sense so long as ( ) 10 4 ≤〈
π

AT
, 

no such motions are possible.  
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