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Abstract

Kopal obtained the explicit expressions for Roche-harmonics associated with
the stellar model of such star, which is rotating on its axis of rotation as a solid
body. However, it may be possible that many stars are not rotating under solid
body rotation, they have differential rotations. Keeping this in view, Singh and
Gupta have obtained the explicit expressions for Roche-harmonics of star,
which is distorted by differential rotation using the law of rotation of the form

w=b, +b,s*. To draw more conclusions, we extend the analysis for Roche-
harmonics associated with the Roche-model of Star distorted by differential
rotation using the law of the formw = b, +b,s* +b,s*. We have also derived

the analytic expressions for Roche-coordinates and Roche-harmonics of non-
rotating but tidally distorted star. This can be more useful to understand the
nature, equilibrium structure, oscillations and stability of the star.

Introduction
Kopal [3] introduced a family of new auxiliary functions, which he called Roche-



236 Sunil Kumar et al

harmonics, generated by the solution of Laplace equation V@ =0. The solution of

Laplace equation has been derived in terms of curvilinear coordinates, which are
associated with the Roche-equipotential. Roche [8] discussed some more theoretical
aspects of Roche-harmonics. In fact, as was pointed by Kopal (op.cit.), spherical
harmonics may be regarded as limiting case of the more general Roche-harmonics,
and the latter may be appropriate for the study of more problems arising in double
stars Astronomy. Observations show that, there are certain variable stars which are
rotating on their axes as well as about each other (cf. Tassoul [12], Slettback [11]). To
study the problem of rotationally and tidally distorted stars, Kopal [2, 3] obtained the
explicit expressions for Roche-coordinates and Roche-harmonics for stellar models
distorted by solid body rotation and as well as distorted by tidal forces. Mohan and
Singh [6, 7] and thereafter Singh [10] extended the analysis of Roche-coordinates
taking into account the effects of differential rotation. The law of differential rotation

has been assumed to be the formw = b, +b,s”. Singh and Gupta [9] used the Roche-

coordinates obtained by Mohan and Singh [7], to extend the analysis and have derived
the new harmonics for stars. In this paper we present the analysis of Roche-harmonics
for stellar models distorted by differential rotation, assuming the generalized law of

differential rotation of the formw = b, +b,s” +b,s*, where o is the angular velocity

of an element distant s from the axis of rotation and 4,, b, and b, are constants.

The contents of this paper are as follows: The explicit expressions of Roche-
coordinates, Metric-coefficients and Roche-harmonics have been obtained, in section
2, for Roche-equipotential surface of a star distorted by differential rotation using the

laww = b, +b,s* +b,s*. In section 3, the explicit expressions of Roche-coordinates,

Metric-coefficients and Roche-harmonics have been obtained for Roche-equipotential
surface of a star distorted by tidal forces. Concluding remarks are reported in section
4.

Roche-Coordinates for Roche-Model Distorted by
Differential Rotation Obeying the Law of the Form

@=b, +bys’ +b,s*

In the case of actual stars, the greater part of their mass is concentrated very near to
the centre. Therefore, their structure comes much closer to the Roche-model (by
Roche-model we mean a model in which the whole mass of the star is supposed to be
concentrated at the centre and this point mass is surrounded by an evanescent
envelope in which density is assumed to vary inversely as some positive power of the
distance from the centre). On the basis of some extensive numerical investigations,
Chandrasekhar [1] has shown that for stars whose central density bears to the mean
density a ratio of 100 or more (as is likely to be true for many of the main sequence
stars let alone be the red giants), the rotating Roche-model of a rotating configuration
represents the actual form of the equipotential surfaces of a rotating star within an
error of less than one percent. It is, therefore, reasonable to assume that equipotential
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surfaces of the type of relation (3) reasonably approximate the equipotential surfaces
of the most of the rotating stars in close binary system.

In our present study, let M and M’ be the total masses of the primary and
secondary components of a binary system, which are assumed to be gaseous spheres.
Let D be the mutual separation between centers of these two masses. Further suppose
that the position of two components of this binary system is referred to a rectangular
system of cartesian-coordinates having the origin at the centre of gravity of mass M,
the x-axis along the line joining the centers of the two components and z-axis is
perpendicular to the plane of the orbit of two components. In this system of

M'D
1 0,0).

For the Roche-model of mass M, rotating according to the law

coordinates, the centre of gravity G of the system may be written as G (

@=b,+b,s* +bs* , the equation of hydrostatic equilibrium may be written in the
form

1
dt//:dV+5a)2d(s2), (1)
where y denotes the potential at a point P at distance r from the centre of star and

V =GM /ris the gravitational potential, @ is the angular velocity of an element

distance s of the star from the axis of rotation.
On using the law of differential rotation and relation (1), we can express our
scheme as

dy =dV + %[(bl2 +2b,b,s* +(2b,by +b3)s* +2b,bys® +b]s*)d(s?) (2)
On integration and simplification equation (2) gives

z//=GTM+%{bf(x2 +y°)+bb, (x> +y°)’ +§(2blb3 +0)(x* +y°) +%b2b3(x2 +y°)*
+§b32(x2+y2)5} . 3)

In terms of spherical polar coordinates x = rcos¢gsind =rA, y =rsingsind =ru
andz =rcosd=rv , expression (3) becomes

5:%+%r2(1—vz){bf(l—v2)+b1b2r2(1—v2)+§(2b1b3 +B ) (1=17) +%b2b3r6(1—v2)3

+%b32r8(1—v2)4}, (4)

where & =Dy /GM is a non-dimensional parameter denoting potential, @ is non-

dimensional angular velocity in the unit of GM / D’ . The surfaces generated by
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setting & =constant in (4) are referred as the Roche-equipotentials. Now if we take
= £7"as our scheme of first approximation to the distance of the equipotential

surfaces from the centre then it can be shown by taking second approximation
asry =19+ A'r =ry(1+A'r/ry) and proceeding similarly for higher order
approximations (7, ,73,... ), we have

r=r, {1 + érg (1- vg ) {6b12 + 6b1b2r02 (1- Vg) +2(2b,b; + b22 )ro4 (1- v(f)2 + 3b2b3r06 (1- v(f )3
2=V Y+, (5)

where v, =cos¢ .

In the system of Roche-coordinates (f,n,af), the &-coordinate is defined by
Roche-equipotential surface of the form as (4) while coordinates 77 and ¢ are defined
by requirement that they are orthogonal of & as well as to each other. The triple
orthogonal system of Roche-coordinates given by &,y + &1y, +&,m, = 0, &40y +
$yGy + 6,0, = 0 andn,{y + 1,0, +n,{, = 0, the second and third coordinates can
be obtained as

77:/1/\/1—1/2 (6)

and
cos¢ = v[l - 3465r3(1 - vz){l 155b +1386b,b,r> (1-v*) +49512b,b, + b )r*(1-v?)’
+770b,b,r 0 (1=v2) + 31528 (1=v2)* ..., (7)

where & and # are exact but ¢ is correct up to second order terms in @ .
The metric coefficients hq, h, and h; are defined by =(&2+&2+

§2) ke Jhy = (M2 +n2+n2) 2 and hy = ({2 + {2+ 32) 7z , where suffixes
denote partial differentiation with respect to x,y and z. By these relations we have
found

hl(f,é/):lfo2 (l V)+3bbr0(l VO) +— (2bb +b2)r0(1 VO) += bb (l VO) +..
h(&,0)=r, Sin§|:1—r03{§b12+§b1b2r02(1—1/02)+;(2b1b3+b22)r04(l—vé)2+§b2b3r06(l—vé)3
bzro8 a —V§)4}+r03 sin? é’{ibf +%b1b2r02 a —V§)+%(2blb3 +b22 )r04(1 —V§)2+

17 23
+ S Db (=) + bl (1- 0)} }
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8

2 6 16
h(&,8) = r{l—r;{gblz +§b1b27”02(1_‘/§)+;(2b1b3 +b22)7”04(1_vg)2 +3b2b3r06(1—vg)3

+%b32}’08 (l—v(f)“}JrrO3 sin” é’{%bﬁ +§blb2r02 (1 —vé)+%(2blb3 +byrt(1-v)+
9 13
+ szb3r06(l—vg)3 +Eb32r08(1—v§)4}...1 (8)

On using the metric coefficients as reported in equation (8), the Laplacian

operator V? = L |2 [hh i +i Mi +i Mi becomes:
hhh, | 6\ by 05) on\ h, On) Og\ h, Oc

V= {[l—?sblzr(f (1-v3)=4bb,r; (1-v;)* =5(2bb, + b)) (1-v;)’ +?b2b3r09 A-v})*

—3b7r0 —10b,b,rS (1=v2) = 7(2b,b, +b2)r] (1-v2)* —20b,b,7 (1 —vg)3]ai

Yy —
7, or,
22

1 8 38
- [2 —§b12r03 + gblz’”o3 (- Vg) _?blbzros (- V(?)2 _H(2b1b3 + b22 )”07 (- Vg)

b A+ 2 b b, + 02 1-v2) +gb2b3r09} v, -2 {1—155%3
5 7 7 ov, 6

3 7 16
_§b12r03 (1=vg)=5bb,ry (1-vg)? _§(2b1b3 +07)ry (1=vg)’ "'?blbz’”o5 (1-vg)

2
0

12 29 0?
+7(2171b3 +b22 )707 (1_‘/02)2 +7b2b3709}(1_‘/02) P } )

The Laplace equation therefore becomes
{1 =3b ) (1=v) = 4bb,r; (1-v)* =5(2b,b, + by )r) (1-vi)’ + %bzbﬂf (1-vo)?
2.3 5 2 2N..7 2N2 9 253 a 2 a¢
=3b'ry —=10b,b,r; (1-vy)—=7(2b,b, + b, )1y 1—vy ) =20b,b,1y (1—-vy) ]— Yy —
or, or,
22

1 8 38
- [2 _§b12r03 + gblz’"o3 (1-vy) _?blbzro5 (1-v)? _H(2b1b3 +b;)ry (1=vg)

+%blb2r05 (1—v§)+#(2blb3 +B2)] (1=v2) +¥b2b3r09}[v0 §—¢j+[1—ébfrg

Vo
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—%bfrsa—vé)—sz?lbzr; 1-v2) —g(zblbg B (1 v2) +§blbzr5 1-v2)
12 29 0
+ 2byby 453 (1) +7b2b3r0°}(1—v§) 81/(;25} =0 (10)
0

Let the solution of this equation be obtained in a series form as

2 2
$=>ar/R, ,and R, = P,(v,) +W7rO3X§j) (v0)+WTr§X§f>(VO)+... : (11)
J

where

w=b+2b byr (1-v3 )+ (2bb, + by )iy (1= ) +2b,byry (1=vy ) +biry (1=vg )t +...
On using (11) in (10), it is shown that the functions x!” (v, )andx!” (v, ) assume

the form because of the influence of the terms pertaining to b;,b,b, 2b,b, +b; and

b3 as given by

xP(v,)=-0.26293v¢ +0.30172v —2.71551, (12)
xP(v,)=-3.125v] +1.21428v2 —3.625v,, (13)
xP(v,)=-16.5625vE +31.71726 v} —14.46428 v2 +19.6428 , (14)
x(v,)=—17.4444v] +13.5196 v —2.61284v] +3.83246 v, (15)
x(v,)=-9.30416v +40.425v¢ —62.2777 v} +22.75v2 —1.1325, (16)
xP(v,)=-0.01947v¢ +0.29114v} —0.3115v2 +2.71551, (17)
xP () =-0.51562v] +11.4922v> —23.2889 v +2.64553 v,, (18) etc.

Explicit Expressions for Roche-Coordinates with the Terms upto

Second-Order of Smallness in Tidal Effect
For a star distorted by solid body rotation as well as tidal distortion, Kopal [2] has
shown that

Dy M'? 1 1
q

_ =4+
GM 2MM+M') r \/(1_217-4_7”2)

— Ar} +nr2(1—-v%), (19)

where, ¢ = M'/M and n = (q + 1)/2 = w?/2 are non-dimensional parameters.

By expanding the radical /(1 — 2Ar + r2) in terms of Legendre’s polynomial
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P;(4) with n = 0 (for a non-rotating but tidally distorted star), relation (19) gives:
&= % +q{1+ Z?zz rJ Pj(AO)} = constant, (20)

2
D M’ . . . .
where, & = by _ —————— is non-dimensional potential.
GM  2M(M+M')

Now if we take 1y = ﬁ as our first approximation to the distance of equipotential

surface from the centre of the star of mass M, it can be shown that
]+1

4 4
r=r 1+qzr0fpj(,10) and (1-22) = (1-22) {1+ 2q Z =P/ ()

j=2

where 4, = cosn.
In present tidal case of triply orthogonal system Roche-coordinate n now becomes

_ r]+1
n=cos 11— (1_/12)21' ) ]°+1 P;(1)
v (21)
and { = cos™!

1-A2

respectively. Whereas the expression { is in closed analytical form, expression for 1
contains only terms up to second order in smallness in q.

Subsequent to the analysis of section 2, the explicit expressions for metric-
coefficients hq, h, and h; up to second-order terms in ¢ now become

m(Em =g |1+ qu + 2/ B (2g)
W 4

+q? Z D G G + K +5)P ) P)

=2 k=2

G+5A-28) .,
- R ARG+ |

ha(Em) = 10| 1+ Z{o‘ + 1B (20) =20 ()}

s 4(’+2)]+k+2 i+ 1)P; (1) Py (A AoP;i(A) P, (A
+q? ;;W{m B (A0)P (o) = 20 (A0)Pe )
AN G+3)A-2) ,
+QZZZ Jrie2 {(l+1)P (Ao)Pk(Ao) 2(]+1) P'(Ao)Pk(Ao)}
j=2 k=2

PP (Re) | jA(A)
20+Dk+1) (k+1)

{k(k + DP,(20)} — 20P(Ap) + -+ l;



242 Sunil Kumar et al

]+k+1
ha(Em) =m0 [1-73 1+qz — (G + DA () + 0B (2o}

]+k+2

4 4
+aaq? ) Y B (G4 DP o) + 208 (10))B () Pio)

j=2 k=2

9)

4

z Y2 GG+ D + G+ Dk + DI (o) P(Ao)]
k=2

4 4

+q
2 j+k+2 . 1
+q ]Zkz B G+ DB PG + (35 DT D

+((1 +/110)) P](/lo)Pk(Ao)} ] (22)

On using the metric coefficients as reported by the relations (22), the Laplacian
operator (V) becomes

15
Vi= [16qrolf) - 76 23— 1) + qri(422¢ — 2423)
1
— 1597 +(2488515—987013 + 2451,)

1
-—q r(;*(1080/15+5136/14 699323 + 24022+8811,)
' ]a_zo{( - 0)}610

1 1 1
+|= 5 += L 3(5013 — 51) + = 5470 F(40123 =752, — 1)

1
+597 5(119744—103842 — 231)

1
+35 975 (6571025 -3948023 — 147732, — 1792)
2

1
+ 72 4°75(129625-50162F — 1010123 — 54015+528640 + 1698) + -] YRR
0

Therefore in this case the Laplace equation (V>¢ = 0) takes the explicit form as

15
VZp = |16qroA3 + - 7 2(A3 — 1) + qrg (4248 — 2423)
1
— 1547 +(2488515—987013 + 2451,)

1
——q rg*(1080/15+5136/14 699313 + 24012+8811,)

16 o0
bl (- )5t
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1 1 1
+5+ Eqrg(SOAﬁ —51) + gqré’(401/13—75/10 -1

1 5 4 2
+5ar§ (119725103825 — 231)
1
+35 976 (6571025 -3948023 147732, — 1792)

+iq2r06(1296l(5)—5016/13 — 1010143 — 5404%+52864, + 1698) + -+ | —5 =
0. (23)
If we assume ¢ = z aerjRj as a series solution of equation (23), where

j
R; = Pi(Ag) + q Zio i Y () + 2 B, i, v i Y )Y P o) + -, (24)
On neglecting higher order terms than q?, it can be shown that the functions
Yz(] )(lo), Y3(] ) (4p) and Y4(] ) (1) assume the form

Y P (1) = 7.53242% — 6.076322 + 0.4978, (25)

Y (29) = 18.753225 — 19.587623 + 3.87891, , (26)

Y9 (o) = 43.751§ — 56.25981% + 16.4261% — 0.7625,  (27)
Y (1) = 13.12525 — 13.768643 + 9.26181,, (28)

Y{¥ (1) = 32.81215 — 42.18761% + 13.764261% — 0.5625,  (29)
Y\ (1) = 41.2652% — 58.276125 + 8.275313 — 3.78991,,  (30)
Y P (Ay) = 23.62515 — 28.6254¢ + 8.376142 — 03752,  (31)

v ¥ (1) = 52.283217 — 18.714845 + 26.86913 — 0.98761,.  (32)

Expression (24) with (25) to (32) constitutes the explicit form of Roche-harmonics
associated with the Roche-equipotential surface (20) of differentially rotating Roche-
model of star up-to second-order of approximation in tidal distortion.

In the present paper, the explicit expressions of Roche-coordinates &,n and ¢ are
given by relations (4), (6) and (7) respectively for differentially rotating Roche-model
of star. The expressions for ¢ and 7 are found to be exact whereas the expression for
¢ coordinate is correct upto second-order terms only. Like the explicit expressions of
Roche-coordinates obtained by Kopal [5] for solid body rotation and by Mohan and
Singh [6], for differential rotation, the explicit expressions of Roche-coordinates for
Roche-model of star rotating differentially according to the law of rotation w = by +
b,s? + bys*), are useful to study the problems of oscillations and stability of such
stars.

Concluding Remarks

In the scheme of our approximation, if we neglect terms pertaining to b, , b; and
retaining b; terms then xg ) is same as obtained by Kopal [3], and if, we neglect only
b term, then xé’ ) is same as obtained by Singh and Gupta [9]. In the present analysis,
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we could only present the results which are because of the influence of the terms
pertaining to b%, b;b, ,2b;b, + b3 ,b,b; and b3 because our scheme of
approximation for angular velocity w is only up to second order of smallness, and in
this, higher order terms have been neglected. The consideration of higher order terms
in w and the combined effect of differential rotation, tidal distortion, Coriolis force
and magnetic perturbations, should lead to the appropriate formulation of this problem
which we intended to investigate in our subsequent study.

It may be pointed out that although we have studied the problems of Roche-
coordinates associated with the equipotential surface by assuming the Roche-model of
the star, the present method of Roche-coordinates can also be used when some more
realistic structure is assumed for the interior of the model. We can still either
approximate the distorted equipotentials of such stars by Roche-model or use their
more realistic form by using the system of Clairaut’s-coordinates (cf. Kopal [4, 5]),
when the law of differential rotation may be assumed of the form w = b; + b,s? +
bss*.
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