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Abstract 
 

Kopal obtained the explicit expressions for Roche-harmonics associated with 
the stellar model of such star, which is rotating on its axis of rotation as a solid 
body. However, it may be possible that many stars are not rotating under solid 
body rotation, they have differential rotations. Keeping this in view, Singh and 
Gupta have obtained the explicit expressions for Roche-harmonics of star, 
which is distorted by differential rotation using the law of rotation of the form

2
21 sbb +=ω . To draw more conclusions, we extend the analysis for Roche-

harmonics associated with the Roche-model of Star distorted by differential 
rotation using the law of the form 4

3
2

21 sbsbb ++=ω . We have also derived 
the analytic expressions for Roche-coordinates and Roche-harmonics of non-
rotating but tidally distorted star. This can be more useful to understand the 
nature, equilibrium structure, oscillations and stability of the star.  

 
 
Introduction 
Kopal [3] introduced a family of new auxiliary functions, which he called Roche-
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harmonics, generated by the solution of Laplace equation 02 =∇ φ . The solution of 
Laplace equation has been derived in terms of curvilinear coordinates, which are 
associated with the Roche-equipotential. Roche [8] discussed some more theoretical 
aspects of Roche-harmonics. In fact, as was pointed by Kopal (op.cit.), spherical 
harmonics may be regarded as limiting case of the more general Roche-harmonics, 
and the latter may be appropriate for the study of more problems arising in double 
stars Astronomy. Observations show that, there are certain variable stars which are 
rotating on their axes as well as about each other (cf. Tassoul [12], Slettback [11]). To 
study the problem of rotationally and tidally distorted stars, Kopal [2, 3] obtained the 
explicit expressions for Roche-coordinates and Roche-harmonics for stellar models 
distorted by solid body rotation and as well as distorted by tidal forces. Mohan and 
Singh [6, 7] and thereafter Singh [10] extended the analysis of Roche-coordinates 
taking into account the effects of differential rotation. The law of differential rotation 
has been assumed to be the form 2

21 sbb +=ω . Singh and Gupta [9] used the Roche-
coordinates obtained by Mohan and Singh [7], to extend the analysis and have derived 
the new harmonics for stars. In this paper we present the analysis of Roche-harmonics 
for stellar models distorted by differential rotation, assuming the generalized law of 
differential rotation of the form 4

3
2

21 sbsbb ++=ω , where ω is the angular velocity 
of an element distant s from the axis of rotation and 1b , 2b  and 3b are constants. 
 The contents of this paper are as follows: The explicit expressions of Roche-
coordinates, Metric-coefficients and Roche-harmonics have been obtained, in section 
2, for Roche-equipotential surface of a star distorted by differential rotation using the 
law 4

3
2

21 sbsbb ++=ω . In section 3, the explicit expressions of Roche-coordinates, 
Metric-coefficients and Roche-harmonics have been obtained for Roche-equipotential 
surface of a star distorted by tidal forces. Concluding remarks are reported in section 
4. 
 
 
Roche-Coordinates for Roche-Model Distorted by 
Differential Rotation Obeying the Law of the Form 

4
3

2
21 sbsbb ++=ω  

In the case of actual stars, the greater part of their mass is concentrated very near to 
the centre. Therefore, their structure comes much closer to the Roche-model (by 
Roche-model we mean a model in which the whole mass of the star is supposed to be 
concentrated at the centre and this point mass is surrounded by an evanescent 
envelope in which density is assumed to vary inversely as some positive power of the 
distance from the centre). On the basis of some extensive numerical investigations, 
Chandrasekhar [1] has shown that for stars whose central density bears to the mean 
density a ratio of 100 or more (as is likely to be true for many of the main sequence 
stars let alone be the red giants), the rotating Roche-model of a rotating configuration 
represents the actual form of the equipotential surfaces of a rotating star within an 
error of less than one percent. It is, therefore, reasonable to assume that equipotential 
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surfaces of the type of relation (3) reasonably approximate the equipotential surfaces 
of the most of the rotating stars in close binary system.  
 In our present study, let ܯ and ܯᇱ be the total masses of the primary and 
secondary components of a binary system, which are assumed to be gaseous spheres. 
Let ܦ be the mutual separation between centers of these two masses. Further suppose 
that the position of two components of this binary system is referred to a rectangular 
system of cartesian-coordinates having the origin at the centre of gravity of mass ܯ, 
the ݔ-axis along the line joining the centers of the two components and z-axis is 
perpendicular to the plane of the orbit of two components. In this system of 
coordinates, the centre of gravity G of the system may be written as ܩ ቀ ெᇲ஽

ெାெᇲ , 0,0ቁ .  
 For the Roche-model of mass M , rotating according to the law 

4
3

2
21 sbsbb ++=ω  , the equation of hydrostatic equilibrium may be written in the 

form 

 
)(

2
1 22 sddVd ωψ += ,        (1) 

 
where ψ  denotes the potential at a point P  at distance r from the centre of star and

rGMV = is the gravitational potential, ω  is the angular velocity of an element 
distance s  of the star from the axis of rotation. 
 On using the law of differential rotation and relation (1), we can express our 
scheme as 

 
)()2)2(2[(

2
1 282

3
6
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231
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2

1 sdsbsbbsbbbsbbbdVd ++++++=ψ        (2) 

 
 On integration and simplification equation (2) gives  
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 In terms of spherical polar coordinates λϑφ rrx == sincos , μϑφ rry == sinsin  
and νϑ rrz == cos , expression (3) becomes  
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where D GMξ ψ=  is a non-dimensional parameter denoting potential, ω  is non-
dimensional angular velocity in the unit of 3GM D . The surfaces generated by 
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setting =ξ constant in (4) are referred as the Roche-equipotentials. Now if we take 
1

0
−= ξr as our scheme of first approximation to the distance of the equipotential 

surfaces from the centre then it can be shown by taking second approximation 
as ݎଵ ൌ ଴ݎ ൅ ∆ᇱݎ ൌ ଴ሺ1ݎ ൅ ∆ᇱݎ ⁄଴ݎ ሻ and proceeding similarly for higher order 
approximations ሺ ݎଶ , , ଷݎ . .. ), we have 

3 2 2 2 2 2 4 2 2 6 2 3
0 0 0 1 1 2 0 0 1 3 2 0 0 2 3 0 0

11 (1 ){6 6 (1 ) 2(2 ) (1 ) 3 (1 )
12

r r r b b b r b b b r b b rν ν ν ν⎡= + − + − + + − + −⎢⎣
  

+ ].....})1( 42
0

8
0

2
3 +−νrb ,              (5) 

 
where 0 cosν ζ= . 
 In the system of Roche-coordinates ( )ξηξ ,, , the ξ -coordinate is defined by 
Roche-equipotential surface of the form as (4) while coordinates η  and ζ  are defined 
by requirement that they are orthogonal of ξ  as well as to each other. The triple 
orthogonal system of Roche-coordinates given by ߦ௫ߟ௫ ൅ ௬ߟ௬ߦ ൅ ௭ߟ௭ߦ ൌ ௫ߞ௫ߦ  ,0 ൅
௬ߞ௬ߦ ൅ ௭ߞ௭ߦ ൌ  0 and ߟ௫ߞ௫ ൅ ௬ߞ௬ߟ ൅ ௭ߞ௭ߟ ൌ 0, the second and third coordinates can 
be obtained as 
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whereξ  and η  are exact but ζ is correct up to second order terms inω .  
 The metric coefficients ݄ଵ, ݄ଶ and ݄ଷ are defined by  ݄ଵ ൌ ൫ߦ௫
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denote partial differentiation with respect to ݔ,  By these relations we have .ݖ and ݕ
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 On using the metric coefficients as reported in equation (8), the Laplacian 
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The Laplace equation therefore becomes  
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Let the solution of this equation be obtained in a series form as  
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Explicit Expressions for Roche-Coordinates with the Terms upto 
Second-Order of Smallness in Tidal Effect 
For a star distorted by solid body rotation as well as tidal distortion, Kopal [2] has 
shown that  

߰ܦ
ܯܩ െ

ᇱଶܯ
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1
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where, ݍ ൌ ᇱܯ ⁄ܯ  and ݊ ൌ ሺݍ ൅ 1ሻ 2⁄ ൌ ߱ଶ 2⁄  are non-dimensional parameters. 
 By expanding the radical ඥሺ1 െ ݎߣ2 ൅  ଶሻ in terms of Legendre’s polynomialݎ
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௝ܲሺߣሻ with ݊ ൌ 0 (for a non-rotating but tidally distorted star), relation (19) gives:  
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௥

൅ ൛1ݍ ൅ ∑ ௝ସݎ
௝ୀଶ ௝ܲሺߣ଴ሻൟ ൌ constant ,           ሺ20ሻ 

 

where, ߦ ൌ ஽ట
ீெ

െ ெᇲమ

ଶெሺெାெᇲሻ
 is non-dimensional potential. 

 Now if we take ݎ଴ ൌ ଵ
కି௤

 as our first approximation to the distance of equipotential 
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where ߣ଴ ൌ cos  .ߟ
 In present tidal case of triply orthogonal system Roche-coordinate ߟ now becomes  
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respectively. Whereas the expression ߞ is in closed analytical form, expression for ߟ 
contains only terms up to second order in smallness in ݍ. 
 Subsequent to the analysis of section 2, the explicit expressions for metric-
coefficients ݄ଵ, ݄ଶ  and ݄ଷ up to second-order terms in q now become 
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′ ሺߣ଴ሻ ൅ ڮ ቉,     



242  Sunil Kumar et al 
 

 

݄ଷሺߦ, ሻߟ ൌ ଴ට1ݎ െ ଴ߣ
ଶ ቎1 ൅ ݍ ෍

௝ା௞ାଵݎ

݆ ൅ 1

ଽ

௝ୀଶ

൛ሺ݆ ൅ 1ሻ ௝ܲሺߣ଴ሻ ൅ ଴ߣ ௝ܲ
′ሺߣ଴ሻൟ      

    ൅ߣ଴ݍଶ ෍ ෍
଴ݎ

௝ା௞ାଶ

ሺ݆ ൅ 1ሻ

ସ

௞ୀଶ

ସ

௝ୀଶ

൛ሺ݆ ൅ 1ሻ ௝ܲሺߣ଴ሻ ൅ ଴ߣ ௝ܲ
′ሺߣ଴ሻൟ ௝ܲሺߣ଴ሻ ௞ܲ

′ ሺߣ଴ሻ    

    ൅ݍଶ ෍ ෍ ଴ݎ
௝ା௞ାଶ

ସ

௞ୀଶ

ସ

௝ୀଶ

ൣሼ݆ሺ݆ ൅ 1ሻ ൅ ሺ݆ ൅ 1ሻሺ݇ ൅ 1ሻሽ ௝ܲሺߣ଴ሻ ௞ܲ
′ ሺߣ଴ሻ൧    

    ൅ݍଶ ෍ ෍ ଴ݎ
௝ା௞ାଶ

ସ

௞ୀଶ

ସ

௝ୀଶ

൜ሺ݆ ൅ 1ሻ ௝ܲሺߣ଴ሻ ௞ܲሺߣ଴ሻ ൅ ൬
1

2ሺ݆ ൅ 1ሻሺ݇ ൅ 1ሻ    

    ൅ ൫ଵିఒబ
మ൯

ሺ௝ାଵሻ ቁ ௝ܲሺߣ଴ሻ ௞ܲ
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 On using the metric coefficients as reported by the relations (22), the Laplacian 
operator ( 2∇ ) becomes   
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Therefore in this case the Laplace equation ( 02 =∇ φ ) takes the explicit form as 
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If we assume ߶ ൌ ෍ ௝ܽݎ଴

௝
௝ܴ

௝

 as a series solution of equation ሺ23ሻ, where  

 ௝ܴ ൌ ௝ܲሺߣ଴ሻ ൅ ݍ ∑ ଴ݎ
௜ାଵସ

௜ୀଶ ௜ܻ
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On neglecting higher order terms than ݍଶ , it can be shown that the functions 

ଶܻ
ሺ௝ሻሺߣ଴ሻ,  ଷܻ

ሺ௝ሻሺߣ଴ሻ and ସܻ
ሺ௝ሻሺߣ଴ሻ assume the form 

ଶܻ
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ଶ െ 0.5625 ,         ሺ29ሻ 

ଷܻ
ሺସሻሺߣ଴ሻ ൌ ଴ߣ41.265

଻ െ ଴ߣ58.2761
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଺ െ ଴ߣ28.625
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ଷ െ  ଴ .         ሺ32ሻߣ0.9876
 
 Expression (24) with (25) to (32) constitutes the explicit form of Roche-harmonics 
associated with the Roche-equipotential surface (20) of differentially rotating Roche-
model of star up-to second-order of approximation in tidal distortion. 
 In the present paper, the explicit expressions of Roche-coordinates ߦ,  are ߞ and ߟ
given by relations (4), (6) and (7) respectively for differentially rotating Roche-model 
of star. The expressions for ߦ and ߟ are found to be exact whereas the expression for 
 coordinate is correct upto second-order terms only. Like the explicit expressions of ߞ
Roche-coordinates obtained by Kopal [5] for solid body rotation and by Mohan and 
Singh [6], for differential rotation, the explicit expressions of Roche-coordinates for 
Roche-model of star rotating differentially according to the law of rotation ߱ ൌ ܾଵ ൅
ܾଶݏଶ ൅ ܾଷݏସ), are useful to study the problems of oscillations and stability of such 
stars.  
 
 
Concluding Remarks 
In the scheme of our approximation, if we neglect terms pertaining to ܾଶ , ܾଷ and 
retaining ܾଵ terms then ݔଶ

ሺ௝ሻ is same as obtained by Kopal [3], and if, we neglect only 
ܾଷ term, then ݔଶ

ሺ௝ሻ is same as obtained by Singh and Gupta [9]. In the present analysis, 
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we could only present the results which are because of the influence of the terms 
pertaining to ܾଶ

ଶ, ܾଵܾଶ , 2ܾଵܾଶ ൅  ܾଶ
ଶ , ܾଶܾଷ and  ܾଷ

ଶ because our scheme of 
approximation for angular velocity ߱ is only up to second order of smallness, and in 
this, higher order terms have been neglected. The consideration of higher order terms 
in ߱ and the combined effect of differential rotation, tidal distortion, Coriolis force 
and magnetic perturbations, should lead to the appropriate formulation of this problem 
which we intended to investigate in our subsequent study. 
 It may be pointed out that although we have studied the problems of Roche-
coordinates associated with the equipotential surface by assuming the Roche-model of 
the star, the present method of Roche-coordinates can also be used when some more 
realistic structure is assumed for the interior of the model. We can still either 
approximate the distorted equipotentials of such stars by Roche-model or use their 
more realistic form by using the system of Clairaut’s-coordinates (cf. Kopal [4, 5]), 
when the law of differential rotation may be assumed of the form ߱ ൌ ܾଵ ൅ ܾଶݏଶ ൅
ܾଷݏସ.  
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