On Generalized-*a* **b Spaces**

¹L. Vinayagamoorthi and ²N. Nagaveni

¹Department of Mathematics, Gnanamani College of Technology, Namakkal, India ²Associate Professor, Department of Mathematics, Coimbatore Institute of Technology, India

Abstract

In this paper we study new class is called of generalized α b – Spaces, (denoted by $T_{g\alpha b}$ -spaces) and study some of their properties.

Keywords and phrases: $T_{1/2}$ -space, Semi- $T_{1/2}$ space, Pre- $T_{1/2}$ space, $T_{g\alpha}$ -space, $T_{\alpha g}$ -space, T_{gs} -space.

Introduction

In 1970, N. Levine introduced the $T_{1/2}$ - space if every g-closed set is closed. The aim of this paper is to continue the study of generalized b-spaces. In particular, the notion of generalized α b-spaces and its various characterizations are given in this paper. Throughout this paper all spaces X is (X, τ) stand for topological spaces with no separation axioms assumed unless otherwise stated. Let A \subseteq X, the closure of A and the interior of A will be denoted by cl(A) and int(A) respectively and the union of all b-open sets X contained in A is called b-interior of A and is denoted by bint(A) and the intersection of all b-closed sets of X containing A is called b-closure of A and is denoted by bcl(A).

Preliminaries

In this section let us recall some definitions and results which are used in this section

Definition 2.1: A subset A of a topological space (X,τ) is called α - open[16] if A \subseteq int (cl(int(A))

Definition 2.2: A subset A of a topological space (X, τ) is called semi- open [1] if A \subseteq cl(int (A))

Definition 2.3: A subset A of a topological space (X, τ) is called pre-open[6] if A \subseteq int (cl(A))

Definition 2.4: A subset A of a topological space (X, τ) is called semi-pre open [1] if $A \subseteq cl$ (int (cl(A)))

Definition 2.5: A subset A of a topological space (X, τ) is called b-open [4]if $A \subseteq cl$ (int (A)) \bigcup int (cl(A)).

Definition 2.6: A is said to be generalized closed set (g-closed) [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open

Definition 2.7: A is said to be α -generalized closed set (α g-closed) [16] if α cl(A) \subseteq U whenever A \subseteq U and U is open.

Definition 2.8: A is said to be generalized pre-closed set (gp-closed) [12] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 2.9: A is said to be generalized semi-preclosed(gsp-closed) set[6] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition2.10: A is said to be generalized semi-closed set(gs-closed) set[3] if scl(A) \subseteq U whenever A \subseteq U and U is open.

Definition 2.11: A is said to be semi generalized closed set (sg-closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open.

Definition 2.12: A is said to be generalized b-closed set(gb-closed) [18] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Remark 2.13: The complement of the above open sets are known as their respective closed sets and vice-versa.

Definition 2.14: A space X is said to be semi- $T_{1/2}$ space,[20]if every sg-closed set is semi closed.

Definition 2.15: A space X is said to be pre- $T_{1/2}$ space,[22] if every gp-closed set is pre-closed.

Definition 2.16: A space X is said to be semi-pre- $T_{1/2}$ [23] if every g α -closed set and

202

gsp-closed set is α -closed set and semi-pre-closed set.

Definition 2.17: A space X is said to be $T_{1/2}$ - space,[19] if every g-closed set is closed, or equivalently if every singleton is open or closed.

Definition 2.18: A space X is said to be pre-regular- $T_{1/2}$ - space, [25] iff every gprclosed set is pre-closed set. Note that a subset A is called gpr-closed whenever pclA \subset U whenever A \subset U and U is regular open.

Definition 2.19: A space X is said to be $T_{g\alpha}$ space[16] if every $g\alpha$ -closed set is α g-closed set.

Definition 2.20: A space X is said to be $T_{\alpha g}$ -space [16] if every α g-closed set is $g\alpha$ - closed set.

$T_{g\alpha b}$ - spaces

In this section we introduce a new space T $_{gab}$ - spaces in topology and study some of their properties

Definition 3.1: A topological space X is said to be T_{gab} -space if every $g\alpha$ b-closed subset of X is α -closed in X.

Theorem 3.2: Every T_{gab} -space is $T_{1/2}$ - space.

Proof: Let us assume that (X, τ) be $T_{g\alpha b}$ -space. Let A be $g\alpha$ b-closed, every $g\alpha$ bclosed sets are g-closed since X is $T_{g\alpha b}$ -space then A is closed therefore X is $T_{1/2}$ space.

Remark 3.3: The converse of the above theorem need not be true as seen from the following example.

Example 3.4: Let X = {a,b,c} with $\tau = \{x, \phi, \{a\}, \{c\}, \{a,c\}\}\)$ in this topological space {a} is $g\alpha$ b-closed but not α -closed.

Theorem 3.5: Every semi- $T_{1/2}$ - space is T_{gab} -space.

Proof: Let us assume that (X, τ) be semi- $T_{1/2}$ - space. Let A be sg-closed, if every sgclosed sets are $g \alpha$ b-closed, since X is semi- $T_{1/2}$ - space A is α - closed therefore X is $T_{g\alpha b}$ -space. **Remark 3.6:** The converse of the above theorem need not be true as seen from the following example.

Example 3.7: Let X = {a,b,c} with $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}\$ in this topological space {a} is $g \alpha$ b-closed but not α -closed.

Theorem 3.8: Every T_{gab} -space is pre- $T_{1/2}$ - space.

Proof: Let us assume that (X, τ) be $T_{g\alpha b}$ -space. Let A be $g\alpha$ b-closed, if every $g\alpha$ b-closed gp-closed sets, since X is $T_{g\alpha b}$ -space, A is pre-closed therefore X is pre- $T_{1/2}$ -space.

Remark 3.9: The converse of the above theorem need not be true as seen from the following example.

Example 3.10: Let X = {a,b,c} with $\tau = \{X, \phi, \{a\}\}$ in this topological space the subset {a,b} is gp-closed but not pre-closed.

Theorem 3.11: Every αT_d -space is $T_{g\alpha b}$ -space.

Proof: Let us assume that (X, τ) be αT_d -space. Let A be α g-closed, if every α g-closed is g α b-closed, since X is αT_d -space, A is α - closed therefore X is $T_{e\alpha b}$ -space.

Remark 3.12: The converse of the above theorem need not be true as seen from the following example.

Example 3.13: Let $X = \{a,b,c\}$ with $\tau = \{X, \phi, \{a\} \{c\}, \{a,c\}\}$ in this topological space the subset $\{a\}$ is $g\alpha$ b-closed but it is not α - closed.

Theorem 3.14: Every T_{eab} -space is pre-regular- $T_{1/2}$ - space.

Proof: Let us assume that (X, τ) be $T_{g\alpha b}$ -space. Let A be $g\alpha$ b-closed, if every $g\alpha$ b-closed gpr-closed sets, since X is $T_{g\alpha b}$ -space, A is pre-closed therefore X is pre-regular- $T_{1/2}$ -space.

Remark 3.15: The converse of the above theorem need not be true as seen from the following example.

Example 3.16: Let $X = \{a,b,c\}$ with $\tau = \{X, \phi, \{a\}, \{b,c\}\}$ in this topological space the subset $\{c\}$ is $g \alpha$ b-closed but not α -closed.

Theorem 3.17: Every $T_{g\alpha}$ -space is $T_{g\alpha b}$ -space.

Proof: Let us assume that (X, τ) be $T_{g\alpha}$ -space. Let A be $g\alpha$ -closed, if every $g\alpha$ closed set is $g\alpha$ b-closed, since X is $T_{g\alpha}$ -space, A is α -closed therefore X is $T_{g\alpha b}$ space.

Remark 3.18: The converse of the above theorem need not be true as seen from the following example.

Example 3.19: Let X = {a,b,c} with $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}\)$ in this topological space the subset {a} is $g\alpha$ b-closed but not α -closed.

Theorem 3.20: Every $T_{\alpha g}$ -space is $T_{g\alpha b}$ -space.

Proof: Let us assume that (X, τ) be $T_{\alpha g}$ -space. Let A be α g-closed, if every α g-closed set is $g\alpha$ b-closed, since X is $T_{\alpha g}$ -space, A is α -closed therefore X is $T_{g\alpha b}$ -space.

Remark 3.21: The converse of the above theorem need not be true as seen from the following example.

Example 3.22: Let $X = \{a,b,c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a,c\}\}\)$ in this topological space the subset $\{a\}$ is $g\alpha$ b-closed but not α -closed.

Theorem 3.23: Every $T_{g\alpha b}$ -space is T_{gs} -space.

Proof: Let us assume that (X, τ) be $T_{g\alpha b}$ -space. Let A be $g\alpha$ b-closed, if every $g\alpha$ bclosed set is gs-closed, since X is T_{gs} -space, A is sg-closed therefore X is- T_{gs} -space.

Remark 3.24: The converse of the above theorem need not be true as seen from the following example.

Example 3.17: Let X = {a,b,c} with $\tau = \{X, \phi, \{a\}\}$ in this topological space the subset {a,b} is gs-closed but not sg-closed.

Remark 3.18: By the above theorem and results we obtain the following relations:

References

- [1] D. Andrijevic, semipreopen sets, Mat. Vesnik 38, no.1, 24-32.
- [2] D. Andrijevic, On b-open sets, Mat. Vesnik 48(1996), no.1-2,59-64.
- [3] P. Bhattacharya and B.K. Lahiri, Semigeneralized closed sets in topology, Indian J. Math 29(1987), no.3, 375-382(1988).
- [4] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi. J.Math. 2(2007),11-19.
- [5] J. Cao, M. Ganster and I. Reilly, Submaximality, extremal disconnectedness and generalazied closed sets, Houston J. Math 24(1998), no.4, 681-688.
- [6] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ Ser. A. Math 16(1995), 35-48.
- [7] J. Dontchev, contra-continuous function and strongly s-closed spaces, Internal.J.Math.Math.Sci 19(1996), 303-310.
- [8] J. Dontchev, M. Ganster and T. Noiri, On p-closed spaces, Int. J. Math. Sci.24(2000)no.3,203-212.
- [9] M. Ganster and M. Steiner, On some questions about b-open sets, Questions Answers Gen. Topology 25(2007), no.1, 45-52.
- [10] M. Ganster and M. Steiner, On b τ -closed sets. Appl. Gen. Topol 8(2007) no.2, 243-247.
- [11] E.EkiciandM.Caldas,Slightly γ continuousfunctions,Bol.Parna,Mat.(3)22(2004).
- [12] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo(2)19(1970),89-96.
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70(1963), 36-41.
- [14] A.A. Nasef, On-b-locally closed sets and related topics chaos solitons Fractals 12(2001) no.10, 1909-1915.
- [15] O. Njastad, On some classes of nearly open sets pacific. J. Math. 15(1965), 961-970.

- [16] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 15(1994), 51-63.
- [17] M.E. Abd El-Monsef, A.A. El-Atik and M.M. El-Sharkasy some topologies induced by b-open sets, kyungpook Math. J. 45(2005) no.4, 539-547.
- [18] ¹Ahmad Al-Omari and ²Mohd. Salmi Md. Noorani On Generalized b-closed sets. Bull. Malays. Math. Sci. Soc(2) 32(1) (2009), 19-30.
- [19] W.Dunham, T_{1/2}-spaces, Kyungpook Math.J.17(1977), 161-169.
- [20] C.Dorsett, Semi- T_{1/2}-spaces, Ann.Soc.Sci.Bruxells, 92(1978), 143
- [21] P.Bhattacharyya and B.K.Lahiri,Semi generalized closed sets in topology,IndianJ.Math29(1987),375-382.
- [22] J.Umehara and T.Noiri,Every topological space is Pre-T_{1/2}-spaces,Mem.Fac.Sci.Kochi.Univ.Ser.A(Math).17(1996),33-42.
- [23] J.Dontchev,On generalizing semipreopen sets,Mem.Fac.Sci.Kochi Uni.Ser.A.Math.,16(1995),35-48.
- [24] Generalized α -closed and α -generalized closed maps Indian J pure Appl.Math.29(1)(1998),37-49.
- [25] Y.Gnananbal,On generalized preregular sets in topological spaces,Indian j Pure Appl.Math.28)3)(1997),351-360.
- [26] H.Mahi,K.Balachandran and R.Devi,Remarks on semi generalized closed and generalized semiclosed sets,Kyungpook Math.J.,36(1996),155-163.