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Abstract

In this paper, we are concerned with the following third — order boundary
value problem:

u"(0) + f(tul®),w'(@©),u"®) = 0te[01],
u(0) =0,u'(0) = 0,u'(1) = pu'(Y),

Where f:[0,1] X R® > Ris continuous, ¢ >0,0< 1 <1 such
that ¥ < 1. By using two pairs of lower and upper solutions method of
Henderson and Thompson and Leray Schauder degree theory, the existence
result of at least three solutions for the problem is given.
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Introduction
In this paper, we deals with the multiplicity of solutions for the following third order
boundary value problem

u" () + f(tul®),w'(@©),u"®) = 0,te[01] (1.1)
u(0) =0,u'(0) =0,u'(1) = pu'(W) (1.2)

Throughout this paper, we suppose that ¢ > 0,0 < y < 1 such that ¢ P < 1 and
f:10,1] X R® > Ris continuous. Here, we apply two pairs of lower and upper
solutions method of Henderson and Thompson [4] to study the boundary value
problem(1.1), (1.2). Under the condition that f(t,u,v,w) satisfies a Nagumo condition,
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we obtain the existence of three solutions by use of Leray-Schauder degree theory.

Notations and Definitions

We shall use the classical spaces C[0,1], C%[0,1] and L'[0,1]. For x € C?[0,1], we use
the norm |[x|lc = max{|x(t)|:t € [0,1]} and [|x]| = max{l|x|lc, |t l|co , |" || 0 }-
We will use the Sobolev space W31(0,1) which defined by

w31(0,1) = {x:[0,1] » R/ x,x,x" are absolutely continuous on [0,1]with x"

€ L'[0,1]}.

Definition 2.1

A function p(t) € W31(0,1) is called a lower solution for the problem (1.1), (1.2) if
p"" () + f(t,p),p' (®),p" ()= 00<t<1 2.1)
p(0) <0,0p'(0) < 0,p'(1) < ¢p' (W) (2.2)

Similarly, a function o(t) € W31(0,1) is called an upper solution for the
problem (1.1), (1.2) if

"' () + f(t,o®),0'(®),0"(t)) < 0,0<t<1 (2.3)
d(0)>0,0'(0)=0, (1) = ¢po () (2.4)

Definition 2.2 let p be a lower solution and ¢ upper solution for the problem (1.1),
(1.2) satisfying p < o and p' < ¢ on [0,1]. We say that f satisfies a Nagumo
condition with respect to p and o, if there exists a function ¥ € C([0,x); (0, 0))
such that

[f(t, u, v, w)| < P(lw]) (2.5)

For all (t,u,v,w) € [0,1] X [p(t),c(t)] X [p'(t),d'(t)] X R and

f;o%ds = o (2.6)

It is clear that, we can give the Green’s function G(t,s) of the problem (1.1),
(1.2) since the boundary conditions satisfies 1 - ¢p i > 0.

Existence of Triple Solutions
Theorem 3.1 Assume that
There exists two lower solutions p;, p, and upper solutions gy, g, of the problem
(1.1), (1.2) satisfying p; < p, < 0,,p1 <01 < 0,,p; £ 0y on0,1]

Let f(t,u,v,w): [0,1] X R®> - R be a continuous function and non decreasing with
respect to u, for (t,u,v,w) € [0,1] X [p;(t), 0, (t)] X R?;

F satisfies Nagumo condition with respect to p; and o,, the problem (1.1), (1.2)
has at least three solutions u,, u, and u; satisfying
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P1 < u; < O-lapl' < ul' < 0'1'01'1 [O,l] andp2 <u, < O-z,pzr < uzr < O’z'On [0,1],
us £ 01, u3 £ 0y andug & py,uz’ & py on [0,1].

Proof: From assumption (iii), we can choose C > 0, such that

c S

Amd&‘ =1 (31)

A = maXee[o1] 02 (£) — mingepoq1yp1 (t). Let L = max{”pl””w, o2 G221 }

We define three auxiliary functions f;, f, and F: [0,1] X R® - R as
f(t,op,v,Ww),u> a,(t),t €[0,1]

AGuwv,w) ={f6u,v,w), pi(t) Su<a,(t),t €[01] (3.2)
F(tpr,v,w),u < py(0),€ € [0,1]
fit,u,05,w),v> 0, (t),t €[01]

fw,v,w) =X fi(t, u,v,w),p; (t) <v <0, (t),t €[0,1] (3.3)

fl(tl u, p1’: W)pV < pl'(t),t € [0,1]
f(t,u,v,L),w> Lt €[0,1]

F(tlu’ UIW) = fz (t,u, U,W), |W| S L’t E [011] (3.4)
f(tu,v,—L),w < —L,t € [0,1]

Thus F is continuous function on [0,1] X R3, satisfying
|F(t,u,v,w)| < M, for (t,u,v,w) € [0,1] X R3 (3.5)

Where constant M also satisfies M > max{|| p1lls, o210}
Consider the modified problem

u’(6) + F(tu(®),u'®)u'©®) = 0,t € [0,] (3.6)

With the boundary condition (1.2). it suffices to show that problem (3.6) with the
boundary condition (1.2) has at least three solutions u,, u, and u; satisfying

p1(t) S u; < 0y(t), py () S u; (1) < 0 (1), u; (1) S L, t €[0,1] (3.7)
Since F = f in the region, we divide the proof in to cases.
Case I: First we show that p; < u' < 0, on [0,1]. We only need to show u' < g, on
[0,1]. Similarly, we can prove p; < u on [0,1]. If u' < g, on [0,1] is not true, then
there exists t € [0,1] withu' > g,. Now sot w(t) = u'(t) — o, (t), then w(ty) =
max{u'(t) — o, (t):t € [0,1]} > O for some t, € [0,1].

Sub Case 1. If t, = 0, then u'(0) < g, (0), from (2.4), we have the contradiction
g,'(0) =0 = u'(0).

Sub Case 2. If t, € [0,1], we have w(ty) > 0, w' (t,) = 0,w"(ty) < 0. On the other
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hand, w'(ty) = —F (t0:u(to):u’(to);u”(to)) — ;"' (to) =
—f; (to ult), u'(te), 02 (t)) = 02" (t) =1 (to,ulte), 02 (o), 02 (£0) ) —
02" (to).

Step 1. If u(ty) > o,(t,), from the above inequality, one has
w'(te) =1 (to u(to), 05 (t), 0, (t0)) = ;" (to)
= —f1 (t0: 0, (to), 03 (to), 07 ”(to)) — g, (to) > 0.

Step 2. If u(ty) < a,(t,), from the above inequality and (Y),
w'(ty) =—f (t0: u(to), o, (to), 0 ”(to)) — g, (to)

=—f2 (t0: g, (to), 02'(t0),02”(t0)) — 0, () > 0. This is a
contradiction.

Sub Case 3. If to= 1, then w(1) > 0. (3.8)

From (2.4), we have w(0) < 0, thus there exists ¢ € [0,1] such that
w(§)=0and w(t)>0 forall t € [&,1]. (3.9)

If £ € (Y, 1), then there exists t; € (0,€) such that w(t;) = max {w(t):t €
0,)}
From (1.2), (2.4) and (3.8), we have w(t;) = w(®) = u' @) < 0, (Y)

> é[u'(n <o, (D] =% w(1) > 0.

Moreover, w'(t;) = 0and o (t;) < 0. similar to the Sub case 2, we have
contradiction.

If £ € (0,¢), then for all t € [&,1], we have that w(t) = 0. We consider the
following two steps: Step(i) w'(t) = 0,t € [§,1]; and Step(ii), there exists some
t, € [§,1] such that w(t,) >0, w'(t,) = 0,w (t,) < 0. For step (i), similar to Sub
Case( 2), we have 0 (t) >0 or w(t) >0, w'(t)=0,0(t) >0 for all t€
[¢,1], which  implies that the graph of w is concave upward on

[fl 1]1 and also % < g

On the other hand, we have (1) = u'(1) —0,(1) < ¢[u'(Y) — 0, W)] =
polp), @) o

From 0 < ¢ < 1/, we obtain wT = This is contradiction.

For step (i), similar to the argument of Sub Case (2), we have contradiction. Thus
u' <o, on [0,1], then p; <u' <o, on [0,1].Since p(0) <0,5(0) =0, by
integrating the above inequalities on [0,t], we obtain p; < u < g, on [0,1].

We show that |u| < Lon [0,1]. If the assertion is not true, without loss of
generality, we suppose that there exist t € [0,1], satisfying u'(t) > L attains its
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positive maximum over [0,1]. From mean value theorem and p; < u' < o, on [0,1],
there exists @ € [0,1], such that u'(8) =u'(1) —u'(0) <n < L. Sinceu'(t) €
C[0,1], then there exists interval [t t5] S [0,1] such that

u'(ty)=n u'(ts) =L < u'(t) < Lt € (tyts). (3.10)

Thus from (2.5), we obtain |u"(6)| = |F(t, w,u',u")| = |ft,wu, u)| <P @",
t € (t4ts), then |ftswdt| < |ft25 u'’ (t) dt| <. (3.11)

ts, W (' (1))
From (3.1), (3.10), we have féj%dq - |fnLu”(t) dt| > 7. (3.12)

Then (3.11) contradicts (3.12). Thus |u"| < Lon [0,1]. Thus x is the required
solution.

Case Il. We show that the problem (3.6) and (2) has at three solutions u; u, and us.
Let Q= {u€ec?0,1]:|ull <PM+L}, Where

P > max {maxte[o'l] follG (t,s)| ds, 1}, G(t,s) is a Green’s function of the problem
(1.1), (1.2). Define, S:C[0,1] - C?[0,1] by Sp(t) = [, G(t,s) ¢(s)ds, For all
¢ € C[0,1] and t € [0,1]. It is clear that S is completely continuous. Define

H:C[0,1] - €?[0,1] as Hp(t) = F(t, (1), ¢ (1), " (1))
Then, u € C?[0,1] is a solution of the problem (3.6) and (2) if and only if (I-SH)

(u) =0. For u € Q, we have SH(x) = f01 G(t,s) F(s,u(s),u'(s),u"(s))ds.
< M [, G(t,s)ds <PM<PM+L

Clearly, SH(Q) c Q and SH is completely continuous. Then we have
deg(l —SH,2,0) = deg(1,Q,0) = 1. (3.13)

Let, Q,, = fu € Q:u' > p,'on (0,1)}, 27" = {u € Q:u' > 0, on (0,1)}.
Since p, £ 0;,p, = 0; >—Land 0y < 0," < L, it follows that
019 - 0% — Q
Q=@ * 04,0, 0™ =Q, /sz Sper * 0

But no solution on 9Q,, U 027", Thus

deg(l —SH,,0) = deg| I — SH, Q
sz

W'O + deg(I — SH,°1,0)

+deg(I — SH,0Q,,,0).
If we prove that deg(I — SH,2°%,0) = deg(I — SH,Q,,,0) =1,



186 R. Suryanarayana

_ Q - . .
Then deg| I — SH, /—sz 00 —,0 1 and hence there are solutions in

sz,.Q‘” and Q/W respectively. We show that deg(l — SH, sz,O) =1.

Therefore the proof that deg(I — SH,0°%,0) = 1 is the same and hence omitted.

Similar to the conditions of f;, we
f(tl O-Zr v, W)r u> 0-2 (t)) t € [Oll]P

define £, (¢, u, v, w) = ftu,v,w),p,(t) <u<oa,(t),t €[0,1];
f(t, [ W),u < pz(t), t €0,1].
fi (t,u, 05 (H),w),v > 0, (t),t € [0,1];
£ uv,w) = LA EGur,w),p, (O <v <o (0)t e [01];
fi'(tu, pz'(t),w),v <p, (®),t€[0,1].

Now from I - SH/Q,,, we define its extension I - SH*: Q — C2[0,1] as follows.
£ (t,u,v,L),w > L, t € [0,1];
F*(t,u,v,w) =% o, (t,u,v,w),|w| < L, t € [0,1]; (3.14)
£ (t,u,v,—L),w < —L,t € [0,1].

Thus F*is a continuous function on [0,1] X R3 and satisfies
|F*(t,u,v,w)| < M, (3.15)

For all (t,u,v,w) € [0,1] X R3, where M is given in (3.5).

Define H*: C?[0,1] — C[0,1] as follows H*¢(t) = F*(t,¢(t), d'(t), ¢ (t)).
Then, u € C%[0,1] is a solution of (I - SH*)(u) = 0 if and only if u is a solution of

u' (t) + F*(t,u,u,u’)=0,t € [0,1] (3.16)

Similar to the above argument, it follows that u is a solution of (3.16) with (2)
only if u € Q,,. Thus deg(! — SH*,Q\Q,, ) = 0. Similarly, we show that SH*(Q)
c Q. Then we have, deg(l—SH*,Q,0)=1. Thus deg(l —SH, Q,;,0)=

deg(l — SH*,Q,,,0) = deg(l —SH*,Q\Q,,,0) + deg(l —SH",Q,,,0) =
deg(l — SH*,Q,0) = 1.
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