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Abstract 
 

If M is a −K module with d.c.c. on −K subgroups and satisfying the property 
,)(P then it is shown that M  has a submodule which is uniform.  Further, if 

M  satisfies the Goldie condition, then it is shown that there exists minimal 
elements nxxx L,, 21 in M such that  ⊕><⊕>< 21 xx  

><⊕ nxL  is direct and M  is an essential extension of 

.21 ><⊕⊕><⊕>< nxxx L  
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Introduction 
All near-rings are assumed to be zero-symmetric right near-rings with identity. 
Throughout this paper near-ring under consideration is denoted by .K  
 K.C. Chodhury [1, 2, 3] and BH. Satyanarayana [8, 9] obtained some results on 
Goldie near-rings. In this paper some results on modules in Goldie near-rings are 
obtained.  
 The definitions of −K module, −K subgroups and submodules are as given in 
Pilz[7]. For the sake of continuity the definitions are given below.  
 
Definition 1.1[10]: Let ( )+,M  be a group and K  be a near-ring such that there exists 
a mapping MMKu →×: satisfying the conditions; 

                          ( ) mkmkmkk '' +=+  

                          ( ) ( ).'' mkkmkk =  

 mm =.1 for all MmKkk ∈∈ ,, ' and 1 is the identity of .K  



60  P. Narasimha Swamy 

 

 Then ( )uM ,, +  is called a −K module.   
 
Definition 1.2: A subset N of a −K module M is said to be a −K subgroup of M if 
( )+,N  is a subgroup with .NKN ⊆  
 
Definition 1.3: A normal subgroup N of M  is called a submodule of M  if  

Nkmnmk ∈−+ )(      for all NnMm ∈∈ , and .Kk ∈   
 
Definition 1.4: Let M be a module over a near-ring .K  M is said to be an essential 
extension of a non-zero −K subgroup N if for every non-

zero −K subgroup .0, '' ≠∩ NNN    

 If N is essential in ,M  then we denote it by .MN e≤   
 
Definition 1.5: A −K module M is said to be uniform if it is an essential extension 
of each of its non-zero −K subgroups. 
 
Notation  1.6: If N is a subset of a −K module M , then >< N stands for the 
submodule of M   generated by .N  And the submodule generated by an element 

Mx ∈ is denoted by )(x  or >< x .    
 We assume that −K module M satisfies the property :)(P  

“ ><∩><=>∩< 2121 NNNN  for any two −K subgroups 1N and 2N  of .M ” 
 Any near-ring K  in which every −K subgroup is a submodule of K satisfies this 
property.   
     
Definition 1.7: A −K module is said to satisfy Goldie condition if it cannot contain 
an infinite direct sum of submodules. 
 
 
Main results 
Theorem 2.1: If a −K module M  satisfies Goldie condition, then every submodule 

'M of M contains a sub module N of M . That is, NM ⊃'  and N is a submodule of 
M such that N is uniform. 
 
Proof: Suppose M is not uniform. Then there exists non-zero −K subgroups 1N and 

2N  of M such that .021 =∩ NN  

 Therefore .021 >>=<<∩>< NN  

 Let >=< 11 NM  and .2
'
1 >=< NM  

 Then  '
11 MM ⊕  is direct. 

 If 1M  is not uniform, then there exists as above non-zero −K subgroups 3N and 

4N  of 1M such that .043 =∩ NN  
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 Therefore .043 ><=><∩>< NN  

 Put ><= 32 NM  and .4
'
2 ><= NM  Then the sum '

12
'
2 MMM ⊕⊕  is direct. 

 Again if 2M is not uniform, as above there exists submodules 3M  and '
3M  of 

M such that ><=∩ 0'
33 MM  and  ., '

3232 MMMM ⊃⊃  

 Hence,  the sum 3
'
3

'
2

'
1 MMMM ⊕⊕⊕  is direct. 

 Repeating the argument, we get a sequence{ }nM  of submodules of M which are 

not uniform such that   .321211 L⊂++⊂+⊂ MMMMMM  

 But this is a contradiction to Goldie condition. 
 Because of Goldie condition, after a finite number of steps one gets a submodule 
which is uniform.  
 Applying this construction to any submodule of M , we have that for any 
submodule 'M of M , there exists a uniform submodule N of M such that  

.' NM ⊃     
 
Theorem 2.2: If a −K module M  satisfies Goldie condition, then there exists 
uniform sub modules nUUU ,,, 21 K  of M such that nUUU ⊕⊕⊕ K21 is direct and 

M  is essential extension of  .21 nUUU ⊕⊕⊕ K  

 
Proof: By above theorem, M contains a sub module 1U which is uniform. 
 If M is not essential extension of N , then there exists a −K subgroup N of 
M such that .01 >=<∩ NU  

 Therefore 01 >=<∩ NU , where >< N is the submodule of M generated by .N     

 Either >< N  is uniform or contains a submodule 2U  of M which is uniform. 

 That is  22 , UUN ⊇>< is uniform. 

 Therefore 21 UU ⊕  is direct. 

 Then by Goldie condition, there exists uniform submodules nUUU ,,, 21 K of 

M such that .21 MUUU en ≤⊕⊕⊕ K   � 

 
Theorem 2.3: Let M be a −K module with descending chain condition on 

−K subgroups and satisfying the property .)(P  Then M  has a submodule which is 
uniform. 
 
Proof: If M is not uniform, then there exists −K subgroups 1N  and 2N  such that 

  .021 ><=><∩>< NN  

 Put ><= 11 NM ,  then .1MM
≠
⊃  

 If 1M is not uniform, again there exists −K subgroups '
2

'
1 , NN  such that 

,, '
21

'
11 NMNM ⊃⊃  
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  .0'
2

'
1 =∩ NN  

 Therefore  .0'
2

'
1 ><=><∩>< NN  

 Put .'
12 ><= NM  Then .21 MMM

≠≠
⊃⊃  

 By descending chain condition, after a finite number of steps we get a sub module 
U of M such that UM ⊃ and U is uniform.  
 
Corollary 2.4: If M has descending chain condition on −K subgroups, then for any 
submodule N of M , there exists a uniform submodule U of M such that .UN ⊃  
 
Proof: The proof runs as above.        
 
Definition 2.5[9]: Let .,0 Mxx ∈≠  Then x  is said to be a minimal element if 

,Px ⊃><  

 P  is a submodule of M , then either ><= 0P  or .><= xP  
 
Note 2.6: If 1M  is a submodule of ,M 2M is a sub module of 1M  then 2M  need not be 
a sub-module of .M  
 
Note 2.7: If M satisfies descending chain condition on −K subgroups, then 
M contains a submodule N of M such that NM ⊃ and N is minimal and .0 >≠<N  
  For ><>≠<∈ xxNx ,0,  is minimal. 
 
 Thus minimal elements exists with descending chain condition on −K subgroups.  
In fact, we can say that 'M is any sub module of M , then there exists 0,' ≠∈ xMx  
which is minimal in .M  
 All modules satisfy the condition ).(P  
 
Theorem 2.8: If M satisfies descending chain condition of −N subgroups and also 
Goldie condition, then there exists minimal elements nxxx ,,, 21 KK in M such that 

L⊕><⊕>< 21 xx  

 ><⊕ nxL  is direct and M is an essential extension of  

.21 ><⊕⊕><⊕>< nxxx L  

 
Proof:  By descending chain condition there exists Mx ∈1 such that >< 1x is 
minimal. 
 If M  is not an essential extension of >< 1x , then there exists an −K subgroup 

N such that .01 ><=∩>< Nx   

 Therefore  .01 =><∩>< Nx  

 So, descending chain condition on −K subgroups, >∈< Nx2  which is minimal 
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in M  and  ><⊕>< 21 xx   is direct. 
 By Goldie condition, after a finite number of steps we get minimal 
elements nxxx ,,, 21 KK such that ><⊕⊕><⊕>< nxxx L21  is direct and 

.21 Mxxx en ≤><⊕⊕><⊕>< L              � 

 
Theorem 2.9: Let nxxx ,,, 21 LK  and myyy ,,, 21 LK  be two sets of minimal 

elements such that  

 Mxxx en ≤><⊕⊕><⊕>< L21 and Myyy em ≤><⊕⊕><⊕>< L21 , 

then .mn =  
 
Proof: Assume that .mn <  Then .021 >>≠<<∩><⊕⊕><⊕>< in yxxx L  

 But >< iy  is minimal  implies that Sxxxy ni =><⊕⊕><⊕><⊂>< L21  

 .21 Syyy m ⊂><⊕⊕><⊕><⇒ L  

 Similarly, .2121 ><⊕⊕><⊕>⊂<><⊕⊕><⊕>< mn yyyxxx LL  

 Therefore SyyyxxxS mn =><⊕⊕><⊕><=><⊕⊕><⊕>=< LL 2121 . 

 Now Sx ∈1  

 .,,2,1;,211 miyzzzzx iim LL =>∈<+++=⇒  

 We can assume that .01 ≠z  

 Then  .211 ><⊕⊕><∈− myyzx L  

 Therefore ><⊕⊕><⊕>∈<−−= myyxzxxz LL211111 )( . 

 Since    ;,0 111 ><=><≠ yzz   

 .211 ><⊕⊕><⊕><⊂><⇒ myyxy L  

 Therefore, .211 ><⊕⊕><⊕>>⊂<<⊕⊕><= mm yyxyyS LL  

 Again ><⊕⊕><⊕><=∈ myyxSx L212 , 

 miyttttx iim KL ,2,1;,212 =>∈<+++=⇒ . 

 We can assume that .02 ≠t  

 Then  >∈<+=+ 1
'
1

'
1221 , xttttt  as >< 1x  is normal. 

 Therefore, mttttx ++++= L3
'
122  

 mtttxt +++=+−⇒ L3
'
122  

 ><⊕⊕><⊕>∈<+−⇒ myyxxt L3122  

 .3212 ><⊕⊕><⊕><⊕>∈<⇒ myyxxt L  

 Therefore >∈<≠ 222 ,0 ytt  and >< 2y  is minimal. 

 ><⊕⊕><⊕><⊕>>⊂<<⇒ myyxxy L3212  

 ><⊕⊕><⊕><⊕>>⊂<<⊕⊕><⊕><⇒ mm yyxxyyx LL 32131  

 .32121 ><⊕⊕><⊕><⊕><⊂><⊕⊕><⊕><=⇒ mm yyxxyyxS LL  

 Therefore,  .321 ><⊕⊕><⊕><⊕><= myyxxS L  
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 Proceeding like this,  we have  .11 ><⊕⊕><⊕><⊕⊕>=< + mnn yyxxS LL  

 This cannot be. 
 Therefore .mn </  
 Hence,  .mn ≥  
 Similarly,  .nm ≥  
 Therefore .nm =    
 
 Thus, if M satisfies descending chain condition of N subgroups, Goldie condition 
and property ),( P  then there exists minimal elements  nxxx ,,, 21 K  in M such 

that LL⊕><⊕>< 21 xx  

  Mx en >≤<⊕L and n  depends only on M  but not on the choice of minimal 

elements.  
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