A Note on Goldie Near-Rings

P. Narasimha Swamy

Dept. of Mathematics, Kakatiya University, Warangal-506 009, A.P., India. E-mail: swamy.pasham@rediffmail.com

Abstract

If *M* is a *K*-module with d.c.c. on *K*-subgroups and satisfying the property (*P*), then it is shown that *M* has a submodule which is uniform. Further, if *M* satisfies the Goldie condition, then it is shown that there exists minimal elements $x_1, x_2, \dots x_n$ in *M* such that $< x_1 > \oplus < x_2 > \oplus$

 $\dots \oplus \langle x_n \rangle$ is direct and M is an essential extension of $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \dots \oplus \langle x_n \rangle$.

Keywords: Essential extension, Uniform, Direct sum of submodules, Minimal elements.

AMS Subject classification (2000): 16Y30.

Introduction

All near-rings are assumed to be zero-symmetric right near-rings with identity. Throughout this paper near-ring under consideration is denoted by K.

K.C. Chodhury [1, 2, 3] and BH. Satyanarayana [8, 9] obtained some results on Goldie near-rings. In this paper some results on modules in Goldie near-rings are obtained.

The definitions of K-module, K-subgroups and submodules are as given in Pilz[7]. For the sake of continuity the definitions are given below.

Definition 1.1[10]: Let (M, +) be a group and K be a near-ring such that there exists a mapping $u: K \times M \rightarrow M$ satisfying the conditions;

$$\begin{pmatrix} k+k \end{pmatrix} m = k m + k m \\ (k k) m = k (k m).$$

1.m = m for all $k, k \in K, m \in M$ and 1 is the identity of K.

Then (M, +, u) is called a K-module.

Definition 1.2: A subset N of a K – module M is said to be a K – subgroup of M if (N, +) is a subgroup with $KN \subseteq N$.

Definition 1.3: A normal subgroup N of M is called a submodule of M if $k(m+n)-km \in N$ for all $m \in M$, $n \in N$ and $k \in K$.

Definition 1.4: Let *M* be a module over a near-ring *K*. *M* is said to be an essential extension of a non-zero K – subgroup *N* if for every non-zero K – subgroup N', $N \cap N' \neq 0$.

If N is essential in M, then we denote it by $N \leq_{e} M$.

Definition 1.5: A K-module M is said to be uniform if it is an essential extension of each of its non-zero K-subgroups.

Notation 1.6: If N is a subset of a K-module M, then $\langle N \rangle$ stands for the submodule of M generated by N. And the submodule generated by an element $x \in M$ is denoted by (x) or $\langle x \rangle$.

We assume that K-module M satisfies the property (P): " $< N_1 \cap N_2 > = < N_1 > \cap < N_2 >$ for any two K-subgroups N_1 and N_2 of M."

Any near-ring K in which every K – subgroup is a submodule of K satisfies this property.

Definition 1.7: A K-module is said to satisfy Goldie condition if it cannot contain an infinite direct sum of submodules.

Main results

Theorem 2.1: If a K-module M satisfies Goldie condition, then every submodule M of M contains a submodule N of M. That is, $M \supset N$ and N is a submodule of M such that N is uniform.

Proof: Suppose *M* is not uniform. Then there exists non-zero *K*-subgroups N_1 and N_2 of *M* such that $N_1 \cap N_2 = 0$.

Therefore $< N_1 > \cap < N_2 > = < 0 >$.

Let $M_1 = \langle N_1 \rangle$ and $M_1 = \langle N_2 \rangle$.

Then $M_1 \oplus M_1$ is direct.

If M_1 is not uniform, then there exists as above non-zero K-subgroups N_3 and N_4 of M_1 such that $N_3 \cap N_4 = 0$.

Therefore $< N_3 > \cap < N_4 > = < 0 >$.

Put $M_2 = \langle N_3 \rangle$ and $M_2 = \langle N_4 \rangle$. Then the sum $M_2 \oplus M_2 \oplus M_1$ is direct.

Again if M_2 is not uniform, as above there exists submodules M_3 and M'_3 of M such that $M_3 \cap M'_3 = <0>$ and $M_2 \supset M_3$, $M_2 \supset M'_3$.

Hence, the sum $M_1 \oplus M_2 \oplus M_3 \oplus M_3$ is direct.

Repeating the argument, we get a sequence $\{M_n\}$ of submodules of M which are not uniform such that $M_1 \subset M_1 + M_2 \subset M_1 + M_2 + M_3 \subset \cdots$.

But this is a contradiction to Goldie condition.

Because of Goldie condition, after a finite number of steps one gets a submodule which is uniform.

Applying this construction to any submodule of M, we have that for any submodule M of M, there exists a uniform submodule N of M such that $M \supset N$.

Theorem 2.2: If a K-module M satisfies Goldie condition, then there exists uniform sub modules $U_1, U_2, ..., U_n$ of M such that $U_1 \oplus U_2 \oplus ... \oplus U_n$ is direct and M is essential extension of $U_1 \oplus U_2 \oplus ... \oplus U_n$.

Proof: By above theorem, M contains a sub module U_1 which is uniform.

If *M* is not essential extension of *N*, then there exists a K-subgroup *N* of *M* such that $U_1 \cap N = <0>$.

Therefore $U_1 \cap \langle N \rangle = 0$, where $\langle N \rangle$ is the submodule of M generated by N.

Either $\langle N \rangle$ is uniform or contains a submodule U_2 of M which is uniform.

That is $\langle N \rangle \supseteq U_2$, U_2 is uniform.

Therefore $U_1 \oplus U_2$ is direct.

Then by Goldie condition, there exists uniform submodules U_1, U_2, \dots, U_n of M such that $U_1 \oplus U_2 \oplus \dots \oplus U_n \leq_e M$.

Theorem 2.3: Let M be a K-module with descending chain condition on K-subgroups and satisfying the property (P). Then M has a submodule which is uniform.

Proof: If M is not uniform, then there exists K-subgroups N_1 and N_2 such that

 $< N_1 > \cap < N_2 > = < 0 >$.

Put $M_1 = \langle N_1 \rangle$, then $M \underset{\neq}{\supset} M_1$.

If M_1 is not uniform, again there exists K-subgroups N_1, N_2 such that $M_1 \supset N_1, M_1 \supset N_2$,

 $N_{1}^{'} \cap N_{2}^{'} = 0.$ Therefore $\langle N_{1}^{'} \rangle \cap \langle N_{2}^{'} \rangle = \langle 0 \rangle.$ Put $M_{2} = \langle N_{1}^{'} \rangle.$ Then $M \underset{\neq}{\supset} M_{1} \underset{\neq}{\supset} M_{2}.$

By descending chain condition, after a finite number of steps we get a sub module U of M such that $M \supset U$ and U is uniform.

Corollary 2.4: If *M* has descending chain condition on K-subgroups, then for any submodule *N* of *M*, there exists a uniform submodule *U* of *M* such that $N \supset U$.

Proof: The proof runs as above.

Definition 2.5[9]: Let $x \neq 0, x \in M$. Then x is said to be a minimal element if $\langle x \rangle \supset P$,

P is a submodule of *M* , then either P = <0 > or P = <x >.

Note 2.6: If M_1 is a submodule of M, M_2 is a submodule of M_1 then M_2 need not be a sub-module of M.

Note 2.7: If *M* satisfies descending chain condition on *K*-subgroups, then *M* contains a submodule *N* of *M* such that $M \supset N$ and *N* is minimal and $N \neq <0>$. For $x \in N, x \neq <0>, <x>$ is minimal.

Thus minimal elements exists with descending chain condition on K-subgroups. In fact, we can say that M is any sub module of M, then there exists $x \in M$, $x \neq 0$ which is minimal in M.

All modules satisfy the condition (*P*).

Theorem 2.8: If *M* satisfies descending chain condition of *N* – subgroups and also Goldie condition, then there exists minimal elements x_1, x_2, \ldots, x_n in *M* such that $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \cdots$

 $\dots \oplus \langle x_n \rangle$ is direct and *M* is an essential extension of $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \dots \oplus \langle x_n \rangle$.

Proof: By descending chain condition there exists $x_1 \in M$ such that $\langle x_1 \rangle$ is minimal.

If *M* is not an essential extension of $\langle x_1 \rangle$, then there exists an *K*-subgroup *N* such that $\langle x_1 \rangle \cap N = \langle 0 \rangle$.

Therefore $\langle x_1 \rangle \cap \langle N \rangle = 0$.

So, descending chain condition on K-subgroups, $x_2 \in \langle N \rangle$ which is minimal

 \square

in *M* and $< x_1 > \oplus < x_2 >$ is direct.

By Goldie condition, after a finite number of steps we get minimal elements x_1, x_2, \dots, x_n such that $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \dots \oplus \langle x_n \rangle$ is direct and $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \dots \oplus \langle x_n \rangle \leq_e M$.

Theorem 2.9: Let x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m be two sets of minimal elements such that

 $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \dots \oplus \langle x_n \rangle \leq_e M$ and $\langle y_1 \rangle \oplus \langle y_2 \rangle \oplus \dots \oplus \langle y_m \rangle \leq_e M$, then n = m.

Proof: Assume that n < m. Then $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \cdots \oplus \langle x_n \rangle \cap \langle y_i \rangle \neq \langle 0 \rangle$. But $\langle y_i \rangle$ is minimal implies that $\langle y_i \rangle \subset \langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \cdots \oplus \langle x_n \rangle = S$ $\Rightarrow \langle y_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle \subset S.$ Similarly, $\langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \cdots \oplus \langle x_n \rangle \subset \langle y_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle$. Therefore $S = \langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \cdots \oplus \langle x_n \rangle = \langle y_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle = S$. Now $x_1 \in S$ $\Rightarrow x_1 = z_1 + z_2 + \dots + z_m, \quad z_i \in \langle y_i \rangle ; i = 1, 2, \dots, m.$ We can assume that $z_1 \neq 0$. Then $x_1 - z_1 \in \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle$. Therefore $z_1 = x_1 - (x_1 - z_1) \in \langle x_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle$. Since $z_1 \neq 0$, $\langle z_1 \rangle = \langle y_1 \rangle$; $\Rightarrow \langle y_1 \rangle \subset \langle x_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle.$ Therefore, $S = \langle y_1 \rangle \oplus \cdots \oplus \langle y_m \rangle \subset \langle x_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle$. Again $x_2 \in S = \langle x_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle$, $\Rightarrow x_2 = t_1 + t_2 + \dots + t_m, t_i \in \langle y_i \rangle \quad ; i = 1, 2, \dots m.$ We can assume that $t_2 \neq 0$. Then $t_1 + t_2 = t_2 + t_1$, $t_1 \in \langle x_1 \rangle$ as $\langle x_1 \rangle$ is normal. Therefore, $x_2 = t_2 + t_1 + t_3 + \dots + t_m$ $\Rightarrow -t_2 + x_2 = t_1 + t_3 + \dots + t_m$ $\Rightarrow -t_2 + x_2 \in \langle x_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle$ $t_2 \in \langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \langle y_3 \rangle \oplus \cdots \oplus \langle y_m \rangle.$ \Rightarrow Therefore $t_2 \neq 0$, $t_2 \in \langle y_2 \rangle$ and $\langle y_2 \rangle$ is minimal. $\Rightarrow \langle y_2 \rangle \subset \langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \langle y_3 \rangle \oplus \cdots \oplus \langle y_m \rangle$ $\Rightarrow < x_1 > \oplus < y_3 > \oplus \dots \oplus < y_m > \subset < x_1 > \oplus < x_2 > \oplus < y_3 > \oplus \dots \oplus < y_m >$ $\Rightarrow S = \langle x_1 \rangle \oplus \langle y_2 \rangle \oplus \cdots \oplus \langle y_m \rangle \subset \langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \langle y_3 \rangle \oplus \cdots \oplus \langle y_m \rangle.$ Therefore, $S = \langle x_1 \rangle \oplus \langle x_2 \rangle \oplus \langle y_3 \rangle \oplus \cdots \oplus \langle y_m \rangle$.

Proceeding like this, we have $S = \langle x_1 \rangle \oplus \cdots \oplus \langle x_n \rangle \oplus \langle y_{n+1} \rangle \oplus \cdots \oplus \langle y_m \rangle$. This cannot be. Therefore $n \not < m$. Hence, $n \ge m$. Similarly, $m \ge n$. Therefore m = n.

Thus, if *M* satisfies descending chain condition of *N* subgroups, Goldie condition and property (*P*), then there exists minimal elements $x_1, x_2, ..., x_n$ in *M* such that $< x_1 > \oplus < x_2 > \oplus \cdots$

 $\dots \oplus \langle x_n \rangle \leq_e M$ and *n* depends only on *M* but not on the choice of minimal elements.

Acknowledgement

The author is very much grateful to Professor A. Radhakrishna and Professor T. Srinivas, Department of Mathematics, Kakatiya University, Warangal for their helpful suggestions.

References

- [1] K.C. Chowdhury, Goldie modules, Indian J. pure appl. Math., 19(7):641-652, July(1988).
- [2] K.C. Chowdhury, Goldie theorem analogue for Goldie near-rings, Indian J. Pure appl. Math., 20(2): 141-149, February(1989).
- [3] K.C. Chowdhury, Radical Goldie near-rings, Indian J. Pure appl. Math., 20(5): 439-445, May(1989).
- [4] A. W. Goldie, The structure of noetherian rings, Lectures on rings and modules, Springer-Verlag, New York(1972).
- [5] K. R. Good Earl, Ring theory(Nonsingular rings and modules), Marcel Dekker, Inc., New York and Basel (1976).
- [6] I. N. Herstein, Topics in ring theory, University of Chicago Press, London (1969).
- [7] G. Pilz, Near-rings, North Holland, New York (1983).
- [8] BH. Satyanarayana, A theorem on modules with finite Goldie dimension, Soochow Journal of Mathematics, 311-315, 32:2(2006).
- [9] Mohiddin Shaw Shaik, Some results on fuzzy dimension of modules, paper presented in XVII congress, Andhra Pradesh State Mathematical Society, Hyderabad, A.P., India, December(2008).
- [10] K. Yugandhar, A note on primary decomposition in noetherian near-rings, Indian J. pure Appl. Math., 20(7), 671-680(1989).