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Introduction

Convexity plays a vital role in many aspects of mathematical programming including
sufficient optimality conditions and duality theory. To relax convexity assumptions
imposed on the functions involved, various generalized notions have been proposed.
One of the useful generalizations is generalized (F,p)-convexity introduced by Preda
[21], an extension of F-convexity defined by Hanson and Mond [9] and generalized p-
convexity defined by Vial [23,24].

Hanson and Mond [8] considered a dual formulation for a class of variational
problems. Mond and Hanson [13] have obtained duality results for control problems.
Mishra and Mukherjee [11] discussed duality for multiobjective variational problems
containing generalized (F,p)-convex functions. Some duality results for a class of
differentiable multiobjective variational problems were studied in [4]. Mukherjee and
Rao [15] considered a mixed type dual for multiobjective variational problem and
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various duality results were established by relating efficient solutions between this
mixed type dual pair. Ahmad and Gulati [2] considered a mixed type duality model
for multiobjective variational problems and a number of duality results were
established by relating proper efficient solutions between this mixed type dual pair.
Nahak and Nanda [16] used the concept of efficiency to formulate Wolfe and Mond-
Weir type duals for multiobjective variational control problems and established weak
and strong duality theorems under generalized (F,p)-convexity assumptions. Patel
[19] used the concept of efficiency to formulate Wolfe and Mond-Weir type duals for
multiobjective fractional variational control problems and established weak and
strong duality theorems under generalized (F,p)-convexity assumptions.

Bector and Singh [3] introduced a class of functions called b-vex functions.
Pandian [18] defined (b,F,p)-convex functions and established duality results for
multiobjective programming problems. Bhatia and Kumar [5] introduced b-vex
functions for variational problems and established some duality results. Bhatia and
Mehra [6] introduced B-type | functions and generalized B-type | functions for
continuous case. Bhatia and Sharma [7] introduced BF-type | functions and their
generalizations for continuous case and established optimality and duality results.
Mishra et al. [12] introduced the class of V-univex type | functions and their
generalizations. Khazafi and Rueda [10] extended V-univex type | functions for
multiobjective variational programming problems and various sufficiency and mixed
type duality results were established under generalized V-univex type | functions.

In this paper, we extend the class of V-univex type | functions and their
generalizations to multiobjective variational control problems on the lines of Khazafi
and Rueda [10] and obtain sufficiency and mixed type duality results for
multiobjective variational control problems.

Definitions and Preliminaries
We use the following notations for vector inequalities. For x,ye R", we have

x<yiff x;, <vy,,i=12,....n,
x<yiff x; <y,,i=1,2,...,n.

Let I=[ab] be real interval and K={,2,..k}, M={,2,.,m}. Let
¢ IXR"XR"XR™XR™ — Rbe continuously differentiable function. In order to
consider ¢(t,x(t),x(t),u(t),u(t)), where x(t):I - R", u(t):I - R™ are differentiable with
derivatives x(t)and u(t) respectively. For notational simplicity, we write
X(1),x(t),u(t),ut) as x,x,u,u respectively, as and when necessary. We denote the
partial derivatives of ¢ by ¢ and ¢,, where
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ool 2.2

ox, ox, oX,

The partial derivatives of other functions used will be written similarly. Let
PS(I,R™) denote the space of all piecewise smooth n-dimensional vector functions x

defined on compact subset I of R with norm |x|= |x| + |Dx| ., where the
differential operator D is given by

y=Dx < x({)=a + Jb'y(s)ds

in which « is a given boundary value. Therefore D = e except at discontinuties.

We consider the following multiobjective variational control problem:

b b b
(MOP) Minimize j f(t,x,x,u,u)dt = j f1(t,x,x,u,0)dt, ..., j £4(t,x,%,u,u)dt |,

subject to x(@) = a, x(b) = B, hi{txxuu) <0, tel, je {1,2,.m}, fi, ic
K={L2,.,k}, and h;, jeM={1,2,..,m}, are assumed to be continuously
differentiable functions defined on IXR"XR"XR™xR™. Let A be the set of feasible

solutions of (MOP). Efficiency and proper efficiency are defined in their usual sense
as defined in [4].

Definition 2.1: A functional F:IXR"XR"XR™XR™XR"XR"XR™xR™—R is said to be
sublinear if for any x, X°eR", x,x° e R", u, W’eR™, 0,u° eR™,
FLEx%u,0x° X0u%,0% e +a, | < FlExxu,x 5%, 0’ e, |

+ F[t,x,x,u,u,xo,xo,u°,u°;a2} , forany o,,a, eR", (A)
and
Ftx5u,ux’ X%, 0% aa | = aF| txxu,ux° x°,u’ u’a],

foranyaeR, >0, acR". (B)
It follows from (A) and (B) that
F[t,x,x,u,u,xo,>'<°,u°,u°;0] =0.

We define the following univex type | functions and their generalizations.
Let us consider a sublinear functional F and the functional f,h:IXR"XR"XR"xR™ —
R. We assume that f and h are continuously differentiable functions. Let
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$:R“ >R*, 4:R™ ->R™, by, bi: PS(L,LR")xPS(,R™)xPS(I,R") xPS(I,R™) =R,
and N:IXR"XR™XR"XR™ - R", p=(p',p?), where p'=(p1,p2,....pr) R,
P?=(P1+iP2+ks -+, Pmek) €R™, d(t,.....,.) be pseudometric on R".

Definition 2.2: A pair (fh) is said to be p-V-univex type | at x’e PS(I,R"), u’e
PS(I,R™) with respectto @, ¢, bo, by, n such that for all (x,u)eA, we have

b b
b, (%,U,X°,U%) j fi(t,x,%,u,u)dt - j f(t,x°,x°,u°,u°)dt}

tx,%,u,0,x°, x°,u°,0°; (2.1)
t +o'd®(x,u,x°, u°),

v

b
F
! 1(t,%,u,x%,u®) (F, (£ x°,u® X%, u°) -%f.x(t,xo,uo,xo,uo))

b
- bl(x,u,xo,uo)(zﬁlj'h(t,xo,u°,>'<°, u®)dt

tx,%,U,0,x°, x%,u,u°; (2.2)
t+ p’d*(x,u,x’,u’).

v

b
F
! n(t,x,u,xo,uo)t(hx(t,xo,uo,xo,uo)—%hx(t,xo,uo,xo,uo))

If (2.1) is satisfied as a strict inequality then we say that a pair (f,h) is semi-strictly
p-V-univex type I at (x°,u°) with respect to @,, ¢,, bo, by, 1.

Remark
i When p',p? = 0, ¢,, ¢,=1,the concept of (b,F,p)-type | is the same as that
of BF-type I in Ref. 7.
ii.  When 7(txux’u’) =1 p',p® =0, ¢, ¢ =1 the same concept appeared in
the definition of (b,F)-convex in Ref. 17.
iii. When ¢, ¢,=1, the concept of (b,F,p)-type I is the same as that of (b,F,p)-
type I in Ref. 20.

Definition 2.3: A pair (f,h) is said to be weakly p-V-strictly pseudoquasi univex type
| at X’ PS(I,R"), u’e PS(I,R™) with respect to ¢,, @, bo, b1, 1 such that for all
(x,u)eA, we have
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b b
é j ftxxuu)dt < ¢ j fi(t,x°,%x°,u®,u°)dt

o | tX.%,u,u,x%,%x°%,u’,u’;
= bo(x,u,xo,uo)J'F

> | ntx,ux®,u®) (F (t,x°,u’x°,u’) -%fx(t,x(),u(),x",u()))
<- p'd®(x,u,x’,u°),

- ¢1i h(tx’,u® X% u°)dt <0
a o | txxu,ux’ x%ul u;

= bl(x,u,xo,uo)jF

a

n(t,x,u,xo,uo)t(hx(t,x°,u°,>‘<°,u°)-%hx(t,x°,u°,>'<°,u°))
< - p*d? (xu,x’, u°).
Definition 2.4: A pair (f,h) is said to be strongly p-V-pseudoquasi univex type | at

x’e PS(I,R"), u’e PS(I,R™) with respect to ¢,, ¢, bo, by, 1 such that for all (x,u)e
A, we have

b b
é, j ftxxuu)dt < ¢ j fi(t,x°,%x°,u®,u°)dt
a a
b taxﬁxlu!ulxoyxoyuoyuo;

= bo(x,u,xo,uo)J'F

a

n(tx,u,x%,u®) (f, (tx°u’x° u°) -%fx(t,x(’,u(’,x",u(’))
< - p'd®(x,u,x’,u’),

K

D ey T

h(t,x’,u’x°,u%)dt <0

o | tx%,u,0,x%,%x%,u’,u’;
= bl(x,u,xo,uo)jF

a

n(tx,ux’,u®) (h, (tx°u’x° u°)-%hx(t,x°,u°,>'<°, u))
< - p*d® (xu,x’, u°).
Definition 2.5: A pair (f,h) is said to be weakly p-V-strictly pseudo univex type | at

x’e PS(LLR"), u’e PS(I,R™) with respect to ¢,, ¢,, bo, by, n such that for all (x,u)e
A, we have
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b b
&, j ftx,xuu)dt < ¢ j f(t,x°,x°,u’,u’)dt

o | tx.%,u,0,x%,%x°%,u’,u’;
= bo(x,u,xo,uo)J'F

> | ntx,ux®,u®) (F (tx°,u’x°,u’) -%fx(t,xo,uo,xo,uo))
<- p'd*(x,u,x’,u%),

b
- ¢ j h(t,x®,u®x%,u)dt < 0

o | tx,%,u,0,x%,%x%,u’,u’;

= b,(x,u,x’,u®)|F
! )£ n(t,x,u,XO,uO)t(hx(t,x°,u°,>‘<°,u°)-%hx(t,x°,u°,>'<°,u°))

< - p?d*(x,u,x’,u°).

Sufficient Conditions
Under generalized p-V-univexity type | conditions, in this section, we establish
various sufficient optimality conditions for (MOP).

Theorem 3.1: Assume that (x°,u’) is a feasible solution for (MOP) and assume that
there exists A° e R*, 1° > 0, B° e PS(I,R™) such that the following relations hold

forall tel:

AT (60, %°,u%,0%) + B2()7h, (t,x° %%, u°)

3.
3 %[imfx(t,xo,)'(o,uo,uo) +ﬂo(t)ThX(t,Xo,Xo,Uo,Uo)] -0, (3.1)
(07 h(tX° 51 1°) = 0, (32)
A1) >0, tel (3.3)

Further, assume that (f,8°(t)"h) is strongly p-V-pseudoquasi univex type | at
(x°,u%) with respect to functions @, @, bobin with by(x,ux’u®)>0 for all
(x,u)e A.  Also suppose that ¢(0)>0anda <0 = ¢(a) <0, provided
A pt+ BT p? > 0, then (x°,u°) is an efficient solution for (MOP).

Proof: If (x°,u®) is not an efficient solution for (MOP), then there exists (x,u) e A

b b
such that jf(t,x,X,u,u)dt < jf(t,xo,xo,uo,uo)dt.

From (3.2), we have
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b
[ 2O h(tx" 50 ,u®,0°)dt = 0.

Using ¢ (0) >0anda < 0 = ¢,(a) < 0, we get

& Uf(t,x,x,u,u)dt - Tf(t,x0 X%,u° ,uo)dt} <0, (3.4)
-¢1Uﬁo(t)Th(t,Xo,)'(o,uo,Uo)dt} <0. (3.5

Since (f,4°(t)'h) is strongly p-V-pseudoquasi univex type I at (x°,u®) with respect
to ¢0’ ¢11 bO,b]_,T],

b | tX,%,u,0.x°% x°%ul,u’;
b, (x,ux’,u®)| F
° j n(tx,u,x°,u®)" (f, (t,x°,u®,x°, u°) -%fx(t,x‘J,UO,x‘J,uO))

< - prd?(x,u,x%,u?),

b t!X!X!u!u!XO!XOyUO!UO;
b, (x,u,x’,u’)| F t
1( );f ﬂ(t,X,U,XO,UO)T (,Bo(t)ThX(t,XO,UO,)'(O,UO)-%ﬂo(t)ThX(t,XO,UO,XO,UO))

i _ (ﬂOsz)dz(X,u,XO, UO).

Since b, (x,u,x’,u®) >0 and A°" >0, we get

o | txX,u,0,x°, x%,u°,u°;

b, (%,u,x’,u’)| F t
O( )l‘ ﬂ(t,X,U,XO,UO)T (ﬂ'OTfX (t,XO,UO ,Xo, UO) _% (ﬂmfx (t,XO ,UO ’)-(0’ UO))) (36)
<- (ﬂOT,Ol)dZ (X,U,XO, UO),
b t!X)X!uyu!XO!XO!uoyuo;
F d dt
' 77(t,x,u,x°,u°)T(ﬂo(t)ThX(t,x°,u°,>'<°,uo)-aﬂ0 t)"h, (tx°u’x°u%) (3.7)

é _ (,BOTpZ)dZ(X,U,XO,UO).

Since b, (x,ux’,u’) > 0, it follows that
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b tyX!qu!u!XOyXOyuoiuo;
b, (x,u,x°,u®) | F t
ol )£ n(t,x,u,xo,uo)T(,Bo(t)Thx(t,x°,u°,>'<°,uo)-% L O tx°uxu’) | (3.8)
<- (87 pP)d (x,ux’, u°).
Adding (3.6) and (3.8), we get
. t,x,%,u,u,x°%,x°,u’,u’:
bo(x,u,xo,uo)jF n(tx,u,x%,u®) (A (tx°,u’x°%,0%) + B2 Th (t,x°,u® x°,u’) [t

_%(ﬂ'm—fx (t,XO,UO,XO, UO) + ﬂO(t)ThX(t’XO’UO’XO, UO)))

< - (ﬂ,OT,Ol*‘ﬁOT,OZ)dZ(X,U,XO,UO),

which contradicts (3.1). Hence (x°,u%) is an efficient solution for (MOP) and the proof
is complete.
In the next theorem, we replace strongly p-V-pseudoquasi univex type | by

weakly p-V-strictly pseudoquasi univex type 1 of (f,5°(t)'h).

Theorem 3.2: Assume that (x°,u’)eA is a feasible solution for (MOP) and there
exists A°eR*, A% > 0, B°ePS(I,R™) such that (3.1)-(3.3) of theorem 3.1 are
satisfied.

Further, assume that (f,°(t)"h) is weakly p-V-strictly pseudoquasi univex type |

at (x°,u°) with respect to functions @, @, bobim with by(x,ux’u®)>0 for all
(x,u) € A. Suppose that #(0)>0anda < 0 = ¢(a) <0, provided
A pt + B p? > 0, then (x°,u°) is an efficient solution for (MOP).

Proof: If (x°,u®) is not an efficient solution for (MOP), then there exists (x,u) e A
b b
such that j f(t,x,x,u,0)dt < jf(t,x°,>'<°,u°,u°)dt.
b
From (3.2), we have IﬂO ®)"h(t,x°,x°,u’,u’)dt = 0.
Using ¢ (0) >0anda < 0 = ¢,(a) < 0, we get

b b
&, j f(t,x,X,u,u)dt - j f(t,x°,x°,u°,u°)dt} < 0,
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b
-¢1[ j ﬂo(t)Th(t,xo,Xo,uo,uo)dt} <o.

Since (f,5°(t)'h) is weakly p-V-strictly pseudoquasi univex type I at (x°,u%) with
respect to ¢,, ¢,, bo,b1,m, so
o | tx%,u,0,x%,x°%,ul,u;
bo(x,u,xo,uo)jF

o | ntx,ux®u®) (f, (tx°%u’x%u°) -%fx (tx°,u’x% u%)
<- pld*(x,u,x’,u%),
b t!X)X!uyu!XO!XO!uoyuo;

b, (x,ux’,u®)|F
l( );f ﬂ(t,X,U,XO,UO)T(ﬂO(t)ThX(t,XO,UO,XO,UO)‘%ﬂo(t)Thx(t,XO,UO,XO,UO))

é _ (,BOsz)dZ(X,U,XO,UO).

Remaining part of the proof follows on similar lines as that of theorem 3.1.
In the final sufficiency result below, we invoke the weak p-V-strictly pseudo

univex type 1 of (f,5°(t)"h).

Theorem 3.3: Assume that (x°,u’)eA is a feasible solution for (MOP) and there
exists 1°eR*, A° >0, B°ePS(I,R™) such that (3.1)-(3.3) of theorem 3.1 are
satisfied.

Further, assume that (f,8°(t)"h) is weakly p-V-strictly pseudo univex type | at

(x°,u%) with respect to functions @, @, bobin with by(x,ux’u®)>0 for all
(x,u) € A. Suppose that #(0)>0anda < 0 = ¢,(a) <0, provided
A pt+ B p? > 0, then (x°,u°) is an efficient solution for (MOP).

Proof: If (x°,u®) is not an efficient solution for (MOP), then there exists (x,u) e A
b b
such that J.f(t,x,x,u,u)dt < If(t,xo,xo,uo,uo)dt.
b
From (3.2), we have j,b"’ ®)"h(t,x°,x°,u’,u’)dt = 0.
Using ¢ (0) >0anda < 0 = ¢,(a) < 0, we get

b b
A j f(t,x,x,u,0)dt - j f(t,x°,x°,u°,u°)dt} < 0,
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b
-¢1[ j ,Bo(t)Th(t,xo,Xo,uo,uo)dt} <o.

Since (f,5°(t)'h) is weakly p-V-strictly pseudo univex type I at (x°,u%) with
respect to @, @, bo,bi,m,
o | tx%,u,u,x%,x%,u’,u’;
b(’(x’u'xo’uo)! " 7(tx,ux®,u®)" (f, (tx°,u’ x°,u°) -%fx(t,x‘J,UO,fo,uO)) . (3.9)
<- p'd?(x,u,x’,u®),
o | Exxuux°,x°ul,u’;

b )£ " n(t,x,u,xo,uo)T(,b'O(t)Thx(t,xo,uo,XO,UO)'%ﬂo(t)Thx(t,XO:UO'XO'UO)) ' a0

<- (8" p*)d* (x,ux’, u°).
From (3.9) and (3.10), we have
b t!X)X!uyu!XO!XO!uoyuo;
jF d t
> | ntx,ux,u®) (f, (tx°%,u’x% u°) -afx(t,XO,uO,XO,uO)) (3.11)
< - p'd*(x,u,x’,u®),

o [ txx,u,ux®, x%,ul,u’;

F dt
!‘ 77(t,x,u,x°,u")T(ﬂo(t)Thx(t,x",u",>'<°,u")-%ﬂ0 ®)"h, (tx°u’x°u°%) (3.12)
< - (ﬁOT,OZ)dZ(X,U,XO, UO).
Since A° >0, (3.11) gives
b t!X)X!u!qunyoyuoluo;
F t
'af n(tx,u,x%,u®) (A%, (tx°%u’x% u°) -%ﬂ“fx (tx°,u®x° u%) (3.13)

< - (A7 ph)d? (x,u,x’, u®).

Adding (3.12) and (3.13), we obtain
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. t,x,x,u,0,x°, x%,u’,u’;
j F| 7tx,u,x®,u®)T(ATF, (tx°,u®,x°,0%) + A°(t)h, (t,x°,u® x°, u°) [dt

a

_%(AOTfX(t,XO,UO,XO,UO) +ﬂO(t)ThX(t’XO’UO’XO,UO)))
< - (/10Tpl+ﬂ0Tp2)d2(X,u,XO,UO),

which contradicts (3.1). Hence the result.

Mixed Type Duality
We divide the index set M of the constraint function of the problem (MOP) into two

distinct subsets, namely J, and J, such that J, U J, =M, and let e be the vector of

R* whose components are all ones. We consider the following mixed type dual for
(MOP):

(XMOP) Maximize j'[(f(t,z,z,w,vv) +{ﬂJI(t)hJ1 (t,z,z,w,W)}e]dt,

subject to x(a) = a, x(b) = B,
[A7F, (tzzwab) + AOTh, (tz2wWW) ]

dr.; N T —
= EV f,(tz.zww) + BM)"h, (tz.2wW) |, (4.1)
T By (Oh™ (t,z,2,w,w)dt > 0, (4.2)
B()=0, t € I, (4.3)
AeR2>0,1e=1e=(11.1) e R (4.4)

Let B be the set of feasible solutions of (XMOP).
We note that we get a Mond-Weir [14] type dual for J, =& and a Wolfe [25]
type dual for J, =& in (XMOP) respectively.

We prove various duality results for (MOP) and (XMOP) under generalized p-V-
univexity type I conditions.

Theorem 4.1: (Weak Duality): Let (x,u)e A and (z,w,4,5(t)) € B. Let any of the
following conditions holds:
a. A>0, (f+4,®h,e B, (©'h,) is strongly p-V-pseudoquasi univex type |
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at (z,w) with respect to @,, @, bo,bi,n with by(x,u,z,w) > 0 for all (x,u) € A.
Also a<0= ¢ <0anda>0 = ¢(a) >0, provided
(ATp+pTp*) 2 0,

b. (f+ 4, ®h,e B, ('h,) is weakly p-V-strictly pseudoquasi univex type | at
(z,w) with respect to ¢@,, @, bo,bi,n with bi(x,u,z,w) > 0 for all (x,u) € A.
Also a<0= ¢ <0anda>0 = ¢(a) >0, provided
(AT p'+Bp*) 2 0,

c. (f+p,®h,e B (©)h,) is weakly p-V-strictly pseudo univex type | at
(z,w) with respect to ¢, ¢, bo,b1,n with bay(x,u,z,w)>0 for all (x,u) € K. Also
a<0 = ¢ @<0anda>0 = ¢(a) >0, provided (1" p'+B"p°)> 0, then
the following cannot hold_: -

ff(t,x,x,u,u)dt < jl[f(t,z,z,w,W) + {8, (O (tz,2w,w)}e]dt.

Proof: Let (x,u) be feasible for (MOP) and (z,w,4,53(t)) be feasible for (XMOP).
Suppose that

ff(t,x,x,u,u)dt < jl[f(t,z,z,w,W) + {8, ()" (tz,2w,W)}e]dt.

Since (x,u) is feasible for (MOP) and (z,w,4,5(t)) be feasible for (XMOP), we

have
b

j[f(t,X,X,u,U) +{p, ()T (t,x,x,u,0)}e]dt

. (4.5)
< j [f(t.z,z,wW) + {8, ()"h* (t,.z,2,w.\W)}e]dt.

Usinga>0 = ¢(a)>0anda < 0 = ¢,(a) < Owith (3.1), we get

T[f(t,x,x,u,u) + {8, (O (tx,x,u,0)}e]dt
b ", <0,
- [Ifttz.zww) + {8, (O"h" (tz.2wi)Jeldt

- QU B, () h™ (t,x,X,u,u)dt} <0.
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Since (f+ 4, ()"h,e, B, ("h, ) is strongly p-V-pseudoquasi univex type | at
(z,w) with respect to @,, ¢, bo,bi,n
A t,X,X,u,u,z,Z,w,Ww,
b, (x,z,u,w).[F n(txu,zw)' (f,(tz.zww) +ep, () h,, (tz,z,w,Ww)) (dt

-% (f, (tzzw,Ww) +ep, ()h,, (t.2,2,WW))

< - p'd*(x,u,z,w),

b | LXXU,0,2,2,WW; (tx,uzw) (B, (0)'h, ,(t,2,2,wW)

b, (x,z,u,w)| F "
J- _%(ﬂjz(t)Tthu(t,Z,Z,W,W)))

< - (BT pH)d*(x,uz,w).

a

Since b, (x,z,uw)>0and A" >0, we get

; t,x,X,u,u,z,Z,w,Ww,
b, (X,2,U,W) j F| 7(txuzw) (A7F, (tzzww) + e, (OTh,, (Lz,zw\w) dt

(4.6)
% (ATf, (tz.zwW) +eB, ()'h,, (t2,2,W,W))
<- (A7 p")d?(x,u,z,w),
oL EXX,U,0,2,2,WW; 77(t,x,u,z,W)T(,6’JZ (t)Tthu(t,Z,i,W,W)
F dt
! -%(,532 (t)ThJZU(t,Z,ZyW,W))) (4.7)
<- (BT p*)d*(x,u.z,w).
By b, (x,z,u,w) >0, it follows that
b | EXX,U,0,2,2,W,W; n(t,x,u,z,w)T(ﬂJZ(t)Thjzu(t,z,z,w,v'v)
bo(x,z,u,w)jF d dt
s[5 8.0 Cz2ww) (4.8)

< - (BTpH)d*(x,uz,w).

Adding (4.6) and (4,8), we obtain
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A t,X,X,u,0,2,Z,W,W;
bo(x,z,u,w)jF n(tx,u,z,w) (A7f, (tz,zwW) + B(t)"h, (t,z,2,w,Ww)) [dt

-%(ffu (t.z,zw,w) + B(t)"h, (t,z,2W,W))

<- (ﬂ“Tpl-'-/Bsz)dz (X,U,Z,W),

which contradicts (4.1).
Now, by hypothesis (b) and from (4.2), (4.5), we get

T[f(t,x,X,u,U) +{p, (t)"h™ (t,x,x,u,u)}e]dt

¢o <0,

- Jb-[f(t,z,Z,w,\iv) + {5, () h™ (t,z,z,w,W)}e]dt

- QU B, () h* (t,x,X,u,u)dt} <0.

Since (f+ g, ()"h,e, B, (1)Th, ) is weakly p-V-strictly pseudoquasi univex type |
at (z,w) with respect to ¢, ¢, bo,b1,n

. t,x,X,u,u,z,2,w,Ww,
b, (X,2,U,W) j Fl n(txuzw) ((F, (tzzww) +ef, (O7h,, (tzzww)) dt

-% (f, (tzzw,Ww) +ep, ()'h,, (t2,2,W,W))

<- p'd?(x,u,z,w),

b | EX,X,U,0,2,2,W,W; n(t,x,u,z,w)T(ﬁJz(t)ThJZU(t,,z,Z,W,v‘v)

bl(x,z,u,wj Fl ¢ !
5 A O™tz zww))

< - (BT p)d*(x,u.z,w).

a

Since b, (x,z,uw) >0and A" > 0, we get
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A t,X,X,u,0,2,Z,W,W;
b, (X,Z,U,W)J.F n(txu,z,w)" ((A'F, (tz,zwW) +ep, ()7h,, (tz,zww)) dt

d (4.9
n (ATf, (tz.zwW) +eB, ()'h,, (t.2,2,W,W))
< - p*d*(x,u,z,w),
b | BXXU0,Z,2WW; (tx,uzw) (B, (0'h, , (,2,2,w,W)
IF d dt
a -a(,b’J2 (t)Thjzu(t,z,Z,W,W))) (4.10)
< - (BT p)d*(x,u.z, w).
By b, (x,z,u,w) >0, it follows that
b | BXXU,0,2,2,WW; (tx.uzw) (B, (0)'h, ,(tz,2,w,W)
bo(x,z,u,w)jF d dt
2 -a(ﬂaz (t)Thjzu(t,ZZ,W,W))) (4.11)

< - (BT pH)d*(x,u.z,w).

Adding (4.9) and (4.11), we obtain
b | EXXU,0,2,2,WW; 7(tx,u,z,w) (AT, (t,2,2wW)+B() ", (t,2,2,w,W))

bo(x,z,u,W)J'F d ; t
. -a(itfu(t,z,z,w,v'v) + A(t) h, (t,z,2,w,W)))

<- (2T + 8" )b (x,uzw),
which contradicts (4.1).

_If (c) holds, then from (4.2) and (4.5), we get i
J'[f(t,x,x,u,U) +{B, (t)Th’ (t,x,%,u,u) }e]dt

IA
o

¢o

- i[f(t,z,z,w,v'v) + {8, (t)"h™ (t,z,z,w,W)}e]dt

- QU B, ()h™ (t,x,X,u,u)dt} <0.

Since (f+ 3, (t)'h,e, B, (1)7h, ) is weakly p-V-strictly pseudo univex type I at
(z,w) with respect to ¢,, @,, bo,bi,n
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bo(x,z,u,w)j.F n(tx,u,z,w)" ((f, (t,z,2,w,W) + ep, (t)ThJlLI (t,z,z,w,W)) (dt

< -

bl(x,z,u,w)jF d dt
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thleu1ulle1W|W;

-% (f, (tzzw,W) +ep, ()h,, (t2,2,W,W))

pd*(x,u,z,w),

b | EXX,U,U,2,2,W,W; n(t,x,u,z,W)T(ﬁJZ(t)Th (t.z,2,W,W) |

Jou

(B, (tz.2W W)

a

“dt

< - (BT p*)d?*(x,u,z,w).

From (4.12) and (4.13), we get

t,x,X,u,0,2,Z,W,W;
n(tx,u.zw) ((f,(t.zzww) +ep, ()'h,, (tz,2,w,W))

o

t

-% (f, (tzzw,w) +ep, ()h,, (t2,2,W,W))

p'd%(x,u,z,w),

[ £X,%,U,U,2,2,W,W; n(txuzw) (B, (O'h, ,(tz.2w,W)
dt

d T 7 WA
o (8,®"h ,(tz,zwW))

< - (B p*)d?*(x,u,z, w).

b

[F

a

< -

Because A" > 0, (4.14) gives

t,X,X,u,0,2,Z,W,W;
n(txu,zw)" ((A'f, (tzzww) + B, ()'h,, (tz.2w,Ww)) dt

ST (22wab) + 5, 0D, (2.2w0)

(A7 p")d* (x,u,z,w),

Adding (4.15) and (4.16), we get

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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o [txxu0Z2W; XUz W) (ATF, (t2,2wW) + BOTh, (62,.2,WW))
!F -%(ﬂu (t,z,z,W,W) + B(t)"h, (t,2,2,W,W))

<-(ATp'+8" p*)d?(x,u,z,w),

which contradicts (4.1).

Corollary 4.1: (See [1] Let (z°.w°,A°,3°(t)) be a feasible solution for (XMOP).
Assume that ) (t)"h, (t.z°,2°,w®W") =0 and assume that (z°,w°) is a feasible for
(MOP). If the weak duality theorem 4.1 holds between (MOP) and (XMOP), then
(z°w°) is an efficient solution for (MOP) and (z°,w°,A° B°(t)) is an efficient
solution for (XMOP).

Necessary optimality conditions for the existence of an external solution for the
single objective variational problem subject to both equality and inequality constraints
were given by Valentine [22]. Invoking Valentine's [22] results, Hanson and Mond [8]
obtained corresponding necessary optimality conditions. Using the relationship
between the efficient solution of the problem (MOP) and the optimal solution of the
associated scalar control problem, the necessary optimality conditions were derived
for the multiobjective variational problems; details can be found in [6]. Fritz John
necessary optimality conditions derived in the form of (3.1)-(3.3) of theorem 3.1 with

A° >0, lead to Kuhn-Tucker type necessary optimality conditions under additional
constraint qualifications.

Theorem 4.2: (Strong Duality, [1]): Let (x°,u®) be feasible solution for (MOP) at
which the Kuhn-Tucker constraint qualification is satisfied. Then there exists
A’eR¥ A% >0, A%e=1, B° ePS(I,R™) such that (x°,u®,A°,A°(t)) is feasible
for (XMOP) with ,Bjj (t)Tth (t,z°,2° w®Ww°) =0.

If also the weak duality theorem 3.1 holds between (MOP) and (XMOP), then
(x°,u®, A°,8°(t)) is an efficient solution for (XMOP).

Proof: Since (x°,u®) is an efficient solution for (MOP) at which the Kuhn-Tucker
constraint qualification is satisfied. Then there exists 1° e R¥, 1° > 0, A%e=1,
£° € PS(I,R™) such that (3.1)-(3.3) of theorem 3.1 hold. Moreover, (x°,u’) € A,
hence the feasibility of (x°,u’, 2°,5°(t)) for (XMOP) follows.

Also because weak duality holds between (MOP) and (XMOP), (x°,u®,A°,5°(t))
is an efficient solution for (XMOP).
If (x°,u®, A°,8°(t)) is not an efficient solution for (XMOP), then proceeding along

the lines similar to those in Corollary 4.1 in [1], we a get a contradiction to weak
duality.
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