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Abstract

In this paper, the existence of nonoscillatory solutions of the even order
nonlinear neutral difference equations of the form

Am_l(rnA(xn + pnxn—k)) + an(xn—l) = hn
are treated by using fixed point technique. Sufficient conditions for the
existence of nonoscillatory solution of such equations are established.
Examples are provided to illustrate the main results.
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1 Introduction
Consider the nonlinear neutral difference equation of the form

Am_l(rnA(xn + pnxn—k)) + an(xn—l) =h,ne N(no) (1.1)
where A is the forward difference operator defined by Ax,, = x,., — x,, kand | are
positive integers, m is an even integer, {p,.},{q,} and {h,,} are real sequences defined
for all n € N(ng) = {ng, ng+1,Mo+2, .- }» Np IS @ nonnegative integer and f is a
continuous real valued function.

Let 8 = max {k,l}. By a solution of equation (1.1), we mean a real sequence
{x,} defined for all n > N(n, — 8) and satisfying equation (1.1) for all n € N,. A
solution {x,} of equation (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative and nonoscillatory otherwise.

The problem of the existence of nonoscillatory solution of nonlinear neutral
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difference equations received less attention as oscillation and nonoscillation problem.
In this article, we apply the technique of Krasnoselskii’s fixed point theorem to
establish some sufficient conditions for the existence of nonoscillatory solutions of
equation (1.1) without using nondecreasing conditions and any sign conditions on the
sequences {q,,} and {h,,}. Here we allow {q,,} and {h,,} to be oscillatory.

Lemma 1.1. (Krasnoselskii’s Fixed Point Theorem)

Let X be a Banach space and let Q be a bounded closed convex subset of X and S;, S,
be maps of Q into X such that S;x + S,y € Q for every pair x,y € Q. If S; is a
contractive and S, is completely continuous, then the equation S;x + S,y = x has a
solution in Q.

Lemma 1.2. (Schauder’s Fixed Point Theorem)

Let Q be a closed, convex and nonempty subset of a Banach space X. LetS: Q — Q
be a continuous mapping such that SQ is relatively compact subset of X. Then S has
atleast one fixed point in Q. That is, there exists an x € Qsuch that Sx = x.

2 Existence of nonoscillatory solutions
In this section we establish sufficient conditions for the existence of bounded
nonoscillatory solution of equation (1.1).

Theorem 2.1.
Assume that —1 < ¢; < p,, < 0and that

z Z (m=2) |4.| < oo (2.1)

nno

Z zs<m 2) k| < oo 02

n=ng

where for s, m e N(n,)

sm = 1_[(5 — i) withs©® =1,

Then equatlon (1.1) has a bounded nonoscillatory solution.

Proof.
By (2. 1) and (2 2), we choose aN € N(n,) sufficiently large such that

— 2),2 Zsm 2 (lqgl + ) < 29

where M; = MaX(rey) s {lf ()1} Let B(n,) be the set of all real sequence with the
3 773
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norm ||x|| = sup,sn, lx,| < oo. Then B(n,) is a Banach space. We define a closed,
bounded and convex subset Q of B(n,) as follows,

0= {x = {x,} € B(ny) : % (1+c) <x, Sg,n € N(no)}.

Define two maps S; and S, : Q — B(n,) as follows,

(SX) :{1+C1_pnxn—kan2N
1 (S1x¥)y, ng <n <N,
and
1 NI, Jym-2) .
(S,x), = { m—=2) Lur, G —s+m=2)"3Dq;f(x) —h ,n2
s=n j=s

(S,x)w ng <n<N.

(i) We shall show that for any x,y € Q,5,x + S,y € Q. Infact for every x,y € Q
and n > N, we get
(51)5 + (S29)n
1

) 1 .
T ZZ Z(J —s+m—2)"D(|q;||yj_| + |hy])

s=n j=s

4 1 1) 1 1)
sl+a-za+o—0py Zfs Zs(m_z)(lqul +|l)
= j=s

4 1+
S1+C1_§C1+ 3 =

e}

%)

SV I

Furthermore, we have
($1%)5 + (S2)n

1 iy
21—tk = gy ) 20—+ m =22yl + )
s=n j=s

1 wvilv
21t Gy 2y 2, o+
s= j=s

1+C1_ 2(1+C1)

>1+
= 1 3 3

1+¢
Z—3
Hence
1+c

4
< (Sx), + (S, 9), < 3 forn=N,.

Thus we have proved that
(51x), + (Syy), € Q foranyx,y € Q.

(ii) We shall show that S; is a contraction mapping on Q. Infact for every x,y € Q
and n > N we have

|(Slx)n - (523’)n| < _pnlxn—k - yn—kl
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< —allx=yll.
Since 0 < —c¢; <1, we conclude that S; is a contraction mapping on €.

(iii)Next we show that S, is uniformly Cauchy. First we shall show that S is
continuous. Let {x(®} be a sequence in Q such that x® - x ={x,} as i > .
Since Q is closed x = {x,,} € Q.

Furthermore, for n > N we have,

(5:°%), = oz zyZ (6= s+ m+2)m g, (x%) - ny].
j=s

and

1 (e} 1 (e}
(2 00 = oy, ;E ,ZS:[(J' —s+m+2)"qf(x;,) — byl

Then '
|(52(1) x)n — (S, x)n|

< Gz 2yt 20+ el () )

S= Tl

< (miZ)l Z Z(]_S+m+z)(m 2agl | (x2) = £ Co-0]

Since

|f( (l)) f(xj—l)| —»0asi—> o,

we conclude that
lim ||(52(") x)n — (S 1) = 0.

| Axdee)

This means that S; is continuous. Finally we prove that S; is uniformly Cauchy. By
(2.1), for any €> 0, choose N; > N large enough so that

1 1 €
=2 Z - ZS(m_z)(|q5|M1 +lhsl) < >
' n=N, n s=n

Thenforx e Q,n, >n; > N,
|(52 x)nz (S, x)n1|

1

<y 0. Z<J-S+m+2><m 2(ayl1F o)l + )
1

"o 2 Z<f-s+m+2><m (a1 o)l + Iy )
1

sz Z<J—s+m+2><m 2(lqj|M; + |hy])

S=n,
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(m 2)! Z T Z(J—s+m+2)(m 2)(|q]|M1 |h D

s=nq j=s
€E €
< E + E =€.
Therefore (S, x) is uniformly Cauchy. By Lemma 1.2, there is an x* € Q such that
Syx*+ S,x* = x*. Itis easy to see that x* = {x;,} is a nonoscillatory solution of the
equation (1.1). This completes the proof of Theorem 2.1. O

Example 2.1.
Consider the difference equation

A3 nA(x —lx ) + ! x
noopintl nn+Dn+2)(n+3)(n+4) ™1

B 3n? — 26n — 36 S92 (23
T DG D D e 2R
_ — _1 = L
Here Thn=N.Pn= —7.qn = n(n+1)(n+2)(n+3)(n+4) and
3n%-26n-36

h, = = DD DD . It is easy to see that all conditions of Theorem 2.1

are satisfied and hence the equation (2.3) has a bounded nonoscillatory solution.
Infact {x,.} = {1 + %} is one such solution of equation (2.3).

Theorem 2.2,
Assume that —co < p,, = ¢, < —1 and that (2.1) and (2.2) hold. Then equation (1.1)
has a bounded nonoscillatory solution.

Proof.
By (2.1) and (2 2), we choose aN € N(n,) sufficiently large such that
1 (e +1)
(m-2) 2
- (m > Z Z S (lqgIMy + hgl) < =23

s=n+k
where M, = maX_<c2+1> cxz 20, UFI}:
1) e

Let B(n,) be the space defined as in the proof of Theorem 2.1. We define a closed,
bounded and convex subset Q of B(n,) as follows:

Q= {x ={x,} € B(n,) : —(CZ;]-)

Define two maps S; and S, : Q — B(n,) as follows:

<x,<—-2c,n€ N(no)}

—c,—1——x ,n=N
(Slx)n — 2 Dn n+k

(S$1x)y . ng <n <N,
and
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1
—_c — (m-2) —_h.
(S3%)n =4 pa (- 2)!21 st;k(l s—k+m—2)"2q;f(x,_)—h n=N
(S,%)y ng<n<N.
We shall show that for any x,y € Q,S5,x + S,y € Q. Infact for every x,y € Q,we

get

(51200 + (52
1
R e 2>.Z > st m =22 g -l + )

s=n ] =s+k
_C2 —-1+2—- . (m 2)| Z Z S(m 2)(|q]|M2 |h |)
S=N ] =s+k
<c -1 2_((32;'1)
S _2C2 .

Furthermore, we have
($1%)5 + (S2)n
1

1
> -1- pxm L S Gmsmkrm =2 gl )

—n j= s+k

R e DD WL s

S=N j=s+k
Cy, — 1 (Cz + 1)
> —c,— 1+ = — ,
= Co 2 2
Hence
c, +1
2 < (Slx)n + (523’)n < _2C2 fOT ne N(no) '
Thus we have proved that
Six+S,y € Qforanyx,y € Q.
We shall show that S; is a contractive mapping on Q. Infact, for x,y € Q and n >
N we have

1
|(Slx)n - (Sly)nl < _p_lxn+k - yn+k|

n
1
< ——le—yll-

Since 0 < —— < 1, we conclude that S; is a contractive mapping on Q .

Proceeding, 5|m|IarIy as in the proof of Theorem 2.1, we obtain S2 is uniformly
Cauchy. By Lemma 1.1, there is an x* € Q such that S;x* + S,x* = x*. Clearly,

= {x;} is a bounded nonoscillatory solution of the equation (1.1). This completes
the proof of Theorem 2.2. O

Example 2.2.
Consider the difference equation
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1
(15 ) nz 1.9

Here , =2"p, = —2,q, = zinand h, = Zin(l t oo ) . It is easy to see that all
conditions of Theorem 2.2 are satisfied and hence the equation (2.4) has a bounded
nonoscillatory solution. Infact {x,,} = {1 + zin} is one such solution of equation (2.4).

1 1
A3 (2" A(x, — 2x,-1)) + on ¥n-1 = 5n (1 +

Theorem 2.3.
Assume that 0 < p,, < c¢3 <1 and that (2.1) and (2.2) hold. Then equation (1.1) has
a bounded nonoscillatory solution.

Proof.
By (2. 1) and (2 2), we choose aN € N(n,) sufficiently large such that

(m )1 Z ZS(’” D (lgsIM; + lhs]) <1 —cq

where M3 - maxz(l c3)sx<4 {lf(x)l}

Let B(n,) be the space defined as in the proof of Theorem 2.1. We define a closed,
bounded and convex subset Q of B(n,) as follows:
QO={x={x,}eB(ny):2(1—¢c3) < x,, < 4,n € Ny}

We define two maps S; and S, : Q — B(n,) as follows:

(SX) :{3+C3_pnxn—kan2N
1 (S:X)y, ng <n <N,
and
: ! il i(j —s+m—=2)"2(q;f (%) = hj) n=N
(Szx)n - (m - 2) 5=nr5 e

(S,x)y ng<n<N.
We shall show that for any x,y € Q,S;x + S,y € Q. Infact for every x,y € Q, and
n = N, we obtain

($12)n + (S29)n
<3+~ Papoic + . (1—S+m 22l (-0 + |hy)
2) s= n

S 2),2 Z =2 Jgy M5 + |y )

S 3+C3+1_C3—4
Furthermore, we have
($1%)5 + (S2)n

1 1w
>3+ 3~ Pudn-k ———=v: ) — ) G —s+m—=2"D(|q;||f(v;_)| + |hy])
(m—2)! i

1 9] 1 0 .
S e SZNE ,Z;S(m ?(la;1M5 + [nj])
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>3+c;—4c;—(1L—c3) = 2(1—c3).
Hence

2(1—c3) < (S x) + (S2y)p <4, forn=n,.
Thus we have proved that
(5:x) + (S,y) € Qforanyx,y € Q.
Proceeding, similarly as in the proof of Theorem 2.1, we obtain the mapping S; is
a contractive on ( and the mapping S; is uniformly Cauchy. By Lemma 1.1, there is
an x*€Q such that S;x*+S,x* = x*. Clearly, x*={x;} is a bounded
nonoscillatory solution of the equation (1.1). This completes the proof of Theorem

2.3. (m]
Example 2.3.
Consider the difference equation

2+ 2 [+ ) ) + on + 23

" 1) | G T D+ D T D)
6
= >2.(2
G Do+ S+ O+ D" 2.(29)
3,3

Here T, = (Tl + 3)’pn — Gn = 6(n+2)°x;_4 and hn _

n+1 (n+1)3(n+2)(n+3)(n+4)(n+5)

o It is easy to see that all conditions of Theorem 2.3 are satisfied

(n+4)(n+5)(n+6)(n+7)
and hence the equation (2.5) has a bounded nonoscillatory solution. Infact {x,,} =

{”—”} is one such solution of equation (2.5).
n+3

Theorem 2.4,
Assume that 1 < ¢, = p, < oo and that (2.1) and (2.2) hold. Then equation (1.1)
has a bounded nonoscillatory solution.

Proof.
By (2.1) and (2. 2) we choose aN € N(n,) sufficiently large so that

1
(m-2) _
Cy (m 2)! Z Z S (lgsIMy + |hg]) <cy—1

s=n+k
where M, = maxz(c4—1) <x<4c, {If ()}
Let B(n,) be the space defined as in the proof of Theorem 2.1. We define a closed,
bounded and convex subset Q of B(n,) as follows:
Q= {x={x,} €B(ngy) : 2(c, — 1) < x,, < 4c,,n € N(ngy)}.
Define two maps S; and S, : Q — B(n,) as follows:
1
(5,x), = 3c, +1 pnxn+k ,n=N
(S$1x)y . ng<n <N,
and
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[ee]

= —1 i : Z

G-s—k+m=2)"2(q,f(x,_)+h) n=N
= I AN J

(5,%),, (m-2)'p, L &

(S,x) ng<n<N.
We shall show that for any x,y € Q,5;x + S,y € Q. Infact for every x,y € Q and
n = N, we obtain
(51)5 + (S29)n

1 1 1« _
S3C4+1_Exn+k+mzr_ Z G =s=k+m=2)"3(|q;||f(y-)| + |h;])

s=n ° j=s+k

1 1w
cacr1e S LS (g,
3¢, (m—2)c, Lur, S (la;|Ma + [Ry])
S=N j=s+k
S3C4+1+C4_1:4C4
Furthermore, we have

(51300 + (52 ]

1 1 1
>3, +1—— - ) Z j—s—k+m—2)m=2(|qg, )|+ |k
Lt G g 0 02 O )

1 1
2 30+ 1-d -y e 2, Pl I
S=N j=s+k

> 3¢, —3—(c,—1) = 2(c, — 1).
Hence

2(c, — 1) <(S1x),, + (S,¥),, < 4c, ,forn € N(ng) .
Thus we have proved that
(5:x) + (S,y) € Qforanyx,y € Q.
Proceeding, similarly as in the proof of Theorem 2.1, we obtain the mapping S; is
a contractive on ( and the mapping S; is uniformly Cauchy. By Lemma 1.1, there is
an x*€Q such that S;x*+S,x* = x*. Clearly, x*={x;} is a bounded
nonoscillatory solution of the equation (1.1). This completes the proof of Theorem
2.4. (n]

Example 2.4.
Consider the difference equation

D3 (3MAGxy, + 220-1)) + —Xpq = — (1 +

311 n
Here o, =3"p, = 2,9, = fnand h, 3in(l + 3n1_1). It is easy to see that all
conditions of Theorem 2.4 are satisfied and hence the equation (2.6) has a bounded

nonoscillatory solution. Infact {x,,} = {1 + 3%} is one such solution of equation (2.6).

=) n=2. (2.6)

3111 -

w

Theorem 2.5.

Assume that p,, = 1 and that (2.1) and (2.2) hold. Then equation (1.1) has a bounded
nonoscillatory solution.

Proof.

By (2.1) and (2.2), we choose a N > n, sufficiently large such that
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(m 2)! Z Z 52 (qsIMs + |hg) < 1

s=n+k
where Mg = max2 <x<a UFEOI}
We define a closed, bounded and convex subset Q of B(n,) as follows:
QO={x={x,}€B(ny):2 < x, < 4,n€N(ny}
Define a map S: Q- B(no) as follows:

n+2jk

(Sx), = { (m - 2>.Z Z Z (s —n+m—2)"(qf(x;-) +h) , n2N

j=1s=n+Q2j-1)k

t (Sx)y ng<n<N.
We shall show that for any SQ c Qforeveryx € Qand n > N, we get
n+2jk

(9 <3+ Z Z Y s—n+m =D (g, llf o)l + 1D
=N " j=1 s=n+(2j-1)k
n+2jk

1 1
=3 - YLy S e
"n=n "

j=1 s=n+(2j-1)k

Furthermore, we have

(52, 2 3 SIS N s-ntm-2T Dl el + )

N j=1 s=n+(2j-1)k

1
(m-=2)!

n+2jk

1 1w
> E E E (m-2)
= 3 (m 2) 4 r S (|QS|M5 + |hs|)

=N j=1 s=n+(2j-1)k
>2.
Hence, SQ c Q.
Proceeding, similarly as in the proof of Theorem 2.1, we obtain the mapping S is
uniformly Cauchy By Lemma 1.1, there isan x* € Q such that Sx* = x*, that is

n+2jk

Xp = { _2)| Z Z Z (S_n+m_2)(m_2)(qsf(xs—l)_hs) yn >N
" =1 s=n+(2j-1)k
t XN ny<n<N.
It follows that

T oo =6 _z)usznrsZO—Hm 2" (g f (xs1) = he).

Clearly, x* = {x;.} is a bounded nonoscillatory solution of the equation (1.1). This

completes the proof of Theorem 2.5. O
Example 2.5.
Consider the difference equation
N3 (2"A(xy, + x,_1)) + éx = 62" + 2) n=2.(27)
no -l n(n + 1)(n +2)""t T onp(n+D)(n+2) 0 T
Herer, =2"p, = 1,q, = —°% _and h, 6@+ s easy to see that

n(n+1)(n+2) 2”n(n+1) (n+2)
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all conditions of Theorem 2.5 are satisfied and hence the equation (2.7) has a bounded
nonoscillatory solution. Infact {x,,} = {1 + zin} is one such solution of equation (2.7).

Theorem 2.6.
Assume that Pn = —1 and that

Z Zs<m D Jg5l < o0 (28)

nno

stV |hg| < 0. (2.9)
Z )

n=ng

Then equatlon (1.1) has a bounded nonoscillatory solution.

Proof.
First note that the assumptions (2.8) and (2.9) are equivalent to

Z Z Z s g | <0,  (2.10)

n =ng ] 0 s=n+jk

Z Z Z sMm=2) |p | < 0 (2.11)

n=ng ] 0 s=n+jk
respectlvely We choose a suff|C|entIy large N € N(n,) such that

(m - zernZ Z s02 (lg5IMe + |hsl) <1

j=1s=n+jk
where Mg = maX, < » <1 {If ()1}
We define a closed, bounded and convex subset . of B(n,) as follows,
Q= {x={x,}€B(ny): 2<x, <4,neN(ny}
Defineamap S: Q - B(no) as foIIows

S0, =12 n- 2)'2 Z Z (s —n+m—2)"2(qf(x,)) +hy) , n=N

n=ng j=1 s=n+jk
(Sx)y ng<n<N.
We shall show that for any SQ c Q Infact forevery x € Qand n > N, we get

(00 <3+ — Z rnz Z (s =+ m = 2" (el (o)l + Ihe])

nno j15n+1k

T zyZmZ Z s (g1 Mg + Ihsl)

n=N j=1 s=n+jk
>2.
Hence, SQ < Q. We now show that S is continuous.
Let {x(®} be a sequence in Q such that x® - x = {x,}asi - oo,
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Since Q is closed, x = {x,} € Q. Furthermore, for n > N we have,
|(S(‘) x) — (S x)n|

(m 2)! Z T Z Z s lgsl

n=ng j=1 s=n+jk

( (l)) f(xs l)|

Since
|f(xs(i_)l) —f(xs_l)| - 0asi— o,
we conclude that
i [ (59.2), - 0] =0.
This means that S is continuous. Now, we show that S is uniformly Cauchy. By (2.10)
and (2. 11) for any €> O choose N; > N large enough so that

(m — 2)' Z Z Z s (qsIMe + hsl) < 5.

n=N, j=1 s=Ni+jk
Thenforx e Q,n, >2ny =N

|(S X, — (S x)n1|

< ﬁ SESTS s D lgllf el + I

nnz ]15 n+]k

T m=-2) (m 2)! Z T Z Z s (1gsllf Ces-)I + 1hs])

nn1 j 1 s= n+]k

< G > Z S st g b + )

nnz ]15 n+]k

(m 2)! Z ™ Z Z s (1qs|Ms + Ihs])

n=nq j=1 s=n+jk

< —+— =€,
2 2
Therefore Sx is uniformly Cauchy. By Lemma 1.2, there is an x* € Q such that

Sx* = x*.Thatis
Xy = 3" m- 2>.Z Z Z (s —n+m—2)m2(qf(x;_)—hs) , n=N

n=ng j=1 s=n+jk
Xy ng<n<N.
It follows that

: Z Z(S_’”m 2)m=2(qsf (x5_)) — hs) ,n = N.

(m—2)'n .

Clearly, x* = {x;.} is a bounded nonoscnlatory solution of the equation (1.1). This
completes the proof of Theorem 2.6. O

Xn — Xp—k — —
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Example 2.6.
Consider the difference equation

A3 (3mA( ) + 24 _ 24" +9) >2.(212
n = Xn—2 n(n+1) *n-z = 3nn(n + 1)’” =2.(212)
Here r, =3" p, = —1.q, = ——— and h,, = =2C*9) ¢ is easy to see that all

n(n+1) 3Mn(n+1)
conditions of Theorem 2.6 are satisfied and hence the equation (2.12) has a bounded

nonoscillatory solution. Infact {x,} = {1+3in} is one such solution of equation
(2.12).
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