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Abstract 
 

In this paper, the existence of nonoscillatory solutions of the even order 
nonlinear neutral difference equations of the form 

∆௠ିଵ൫ݎ௡∆(ݔ௡ + ௡ି௞)൯ݔ௡݌ + (௡ି௟ݔ)௡݂ݍ = ℎ௡ 
are treated by using fixed point technique. Sufficient conditions for the 
existence of nonoscillatory solution of such equations are established. 
Examples are provided to illustrate the main results. 
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1 Introduction 
Consider the nonlinear neutral difference equation of the form 

∆௠ିଵ൫ݎ௡∆(ݔ௡ + ௡ି௞)൯ݔ௡݌ + (௡ି௟ݔ)௡݂ݍ = ℎ௡ ,݊ ∈ ℕ(݊଴) (1.1) 
where Δ is the forward difference operator defined by ݔ߂௡ = ௡ାଵݔ − ௡ݔ , k and l are 
positive integers, m is an even integer, {݌௡},  and {ℎ௡} are real sequences defined {௡ݍ}
for all ݊ ∈ ℕ(݊଴) = {݊଴, ݊଴ାଵ, ݊଴ାଶ, … },  ݊଴ is a nonnegative integer and f is a 
continuous real valued function. 
 Let ߠ = , ݇} ݔܽ݉  ݈}. By a solution of equation (1.1), we mean a real sequence 
≤ ݊ defined for all {௡ݔ}  ܰ(݊଴ − ݊ and satisfying equation (1.1) for all (ߠ ∈ ℕ଴. A 
solution {ݔ௡} of equation (1.1) is said to be oscillatory if it is neither eventually 
positive nor eventually negative and nonoscillatory otherwise. 
 
 The problem of the existence of nonoscillatory solution of nonlinear neutral 
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difference equations received less attention as oscillation and nonoscillation problem. 
In this article, we apply the technique of Krasnoselskii’s fixed point theorem to 
establish some sufficient conditions for the existence of nonoscillatory solutions of 
equation (1.1) without using nondecreasing conditions and any sign conditions on the 
sequences {ݍ௡} and {ℎ௡}. Here we allow {ݍ௡} and {ℎ௡} to be oscillatory.  
 
Lemma 1.1. (Krasnoselskii’s Fixed Point Theorem) 
Let X be a Banach space and let Ω be a bounded closed convex subset of X and ଵܵ,ܵଶ 
be maps of Ω into X such that ଵܵݔ + ܵଶݕ ∈ Ω for every pair ݔ, ∋ ݕ Ω. If ଵܵ is a 
contractive and ܵଶ is completely continuous, then the equation ଵܵݔ + ܵଶݕ =  has a ݔ
solution in Ω. 
 
Lemma 1.2. (Schauder’s Fixed Point Theorem) 
Let Ω be a closed, convex and nonempty subset of a Banach space X. Let S : Ω → Ω 
be a continuous mapping such that SΩ is relatively compact subset of X. Then S has 
atleast one fixed point in Ω. That is, there exists an ݔ ∈  Ω such that ܵݔ =  .ݔ 
 
 
2 Existence of nonoscillatory solutions 
In this section we establish sufficient conditions for the existence of bounded 
nonoscillatory solution of equation (1.1). 
 
Theorem 2.1.  
Assume that −1 < ܿଵ ≤ ௡݌  ≤ 0 and that 
 

 

(2.1) 

and  

 

(2.2) 

where for ݏ,݉ ∈ ℕ(݊଴) 

(௠)ݏ =  ෑ(ݏ − ݅)
௠ିଵ

௜ୀ଴

(଴)ݏ ℎݐ݅ݓ  = 1. 

Then equation (1.1) has a bounded nonoscillatory solution. 
 
Proof. 
By (2.1) and (2.2), we choose a ܰ ∈ ℕ(݊଴) sufficiently large such that 

1
(݉ − 2)! ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ݏ(௠ିଶ)
ஶ

௦ୀ௡

ଵܯ|௦ݍ| ) + |ℎ௦|)  ≤
(1 + ܿଵ)

3  

 

where ܯଵ = max(భశ೎భ)
య ஸ௫ஸరయ

 be the set of all real sequence with the (଴݊)ܤ Let .{|(ݔ)݂|} 
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norm ‖ݔ‖ = sup௡ஹ௡బ|ݔ௡| < ∞ . Then ܤ(݊଴) is a Banach space. We define a closed, 
bounded and convex subset Ω of ܤ(݊଴) as follows, 

Ω =  ൜ݔ = {௡ݔ} ∈ (଴݊)ܤ ∶  
1
3 (1 + ܿଵ) ≤ ௡ݔ ≤

4
3 , ݊ ∈ ℕ(݊଴)ൠ. 

Define two maps ଵܵ and ܵଶ ∶  Ω →  ,as follows (଴݊)ܤ

( ଵܵݔ)௡  =  ൜
1 + ܿଵ − , ௡ି௞ݔ௡݌ ݊ ≥ ܰ

 ( ଵܵݔ)ே ,  ݊଴ ≤ ݊ ≤ ܰ,   

and 

(ܵଶݔ)௡  =  ൞ 
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉ − 2)(௠ିଶ)ݍ௝݂൫ݔ௝ି௟൯ − ℎ௝

ஶ

௝ୀ௦

 ,݊ ≥ ܰ

 (ܵଶݔ)ே ,  ݊଴ ≤ ݊ ≤ ܰ.

 

 
(i) We shall show that for any ݔ, ݕ ∈ Ω , ଵܵݔ + ܵଶݕ ∈ Ω . Infact for every ݔ, ݕ ∈ Ω 

and ݊ ≥ ܰ, we get 
( ଵܵݔ)௡ + (ܵଶݕ)௡ 

 ≤ 1 + ܿଵ − ௡ି௞ݔ௡݌ +
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉ − 2)(௠ିଶ)൫หݍ௝หหݕ௝ି௟ห + หℎ௝ห൯
ஶ

௝ୀ௦

  

≤ 1 + ܿଵ −
4
3 ܿଵ +

1
(݉ − 2)! ෍

1
௦ݎ

ஶ

௦ୀே

 ෍ݏ(௠ିଶ)൫หݍ௝หܯଵ + หℎ௝ห൯
ஶ

௝ୀ௦

  

≤ 1 + ܿଵ −
4
3 ܿଵ +

1 + ܿଵ
3 =  

4
3 . 

Furthermore, we have 
( ଵܵݔ)௡ + (ܵଶݕ)௡ 

≥ 1 + ܿଵ − ௡ି௞ݔ௡݌ −
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉ − 2)(௠ିଶ)൫หݍ௝หหݕ௝ି௟ห + หℎ௝ห൯
ஶ

௝ୀ௦

  

≥ 1 + ܿଵ −
1

(݉ − 2)! ෍
1
௦ݎ

ஶ

௦ୀே

 ෍ݏ(௠ିଶ)൫หݍ௝หܯଵ + หℎ௝ห൯
ஶ

௝ୀ௦

  

≥ 1 + ܿଵ −
1 + ܿଵ

3 =  
2(1 + ܿଵ)

3  

≥
1 + ܿଵ

3  . 
Hence 

1 + ܿଵ
3 ≤ ( ଵܵݔ)௡ + (ܵଶݕ)௡ ≤  

4
3 ݊ ݎ݋݂  ≥ ଴ܰ . 

Thus we have proved that  
( ଵܵݔ)௡ + (ܵଶݕ)௡ ∈  Ω ݂ݕ,ݔ ݕ݊ܽ ݎ݋ ∈ Ω . 

 
(ii) We shall show that ଵܵ is a contraction mapping on Ω. Infact for every ݔ, ∋ ݕ Ω 

and ݊ ≥ ܰ we have 
|( ଵܵݔ)௡ − (ܵଶݕ)௡|  ≤ ௡ି௞ݔ|௡݌−  −  |௡ି௞ݕ
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 ≤  −ܿଵ‖ݔ −  . ‖ݕ
Since 0 < −ܿଵ < 1 , we conclude that S1 is a contraction mapping on Ω . 
 
(iii)Next we show that S2 is uniformly Cauchy. First we shall show that S is 

continuous. Let ൛ݔ(௜)ൟ be a sequence in Ω such that ݔ(௜) → ݔ = ݅ as {௡ݔ} → ∞ . 
Since Ω is closed ݔ = {௡ݔ} ∈ Ω . 

Furthermore, for ݊ ≥ ܰ we have, 

ቀܵଶ
(௜) ݔቁ

௡
=  

1
(݉ − 2)! ෍

1
௦ݎ

ஶ

௦ୀ௡

 ෍ቂ(݆ − ݏ + ݉ + 2)(௠ିଶ)ݍ௝݂ቀݔ௝ି௟
(௜) ቁ − ℎ௝ቃ

ஶ

௝ୀ௦

 , 

and 

(ܵଶ ݔ)௡ =  
1

(݉ − 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍ൣ(݆ − ݏ + ݉ + 2)(௠ିଶ)ݍ௝݂൫ݔ௝ି௟൯ − ℎ௝൧
ஶ

௝ୀ௦

 . 

Then 
ቚቀܵଶ

(௜) ݔቁ
௡
− (ܵଶ ݔ)௡ቚ  

 ≤  
1

(݉ − 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉ + 2)(௠ିଶ)หݍ௝ห ቚ݂ቀݔ௝ି௟
(௜) ቁ − ݂൫ݔ௝ି௟൯ቚ

ஶ

௝ୀ௦

 

 ≤  
1

(݉ − 2)! ෍
1
௦ݎ

ஶ

௦ୀே

 ෍(݆ − ݏ + ݉ + 2)(௠ିଶ)หݍ௝ห ቚ݂ቀݔ௝ି௟
(௜) ቁ − ݂൫ݔ௝ି௟൯ቚ

ஶ

௝ୀ௦

 . 

Since  
ቚ݂ቀݔ௝ି௟

(௜) ቁ − ݂൫ݔ௝ି௟൯ቚ  → ݅ ݏܽ 0 → ∞ , 
we conclude that 

lim
௜→ஶ

ቛቀܵଶ
(௜) ݔቁ

௡
− (ܵଶ ݔ)௡ቛ = 0 . 

This means that S2 is continuous. Finally we prove that S2 is uniformly Cauchy. By 
(2.1), for any ∈> 0 , choose ଵܰ > ܰ large enough so that  

1
(݉ − 2)! ෍

1
௡ݎ

ஶ

௡ୀேభ

 ෍ݏ(௠ିଶ)(|ݍ௦|ܯଵ + |ℎ௦|)
ஶ

௦ୀ௡

<  
∈
2 . 

Then for ݔ ∈ Ω , ݊ଶ > ݊ଵ > ଵܰ  
ห(ܵଶ ݔ)௡మ − (ܵଶ ݔ)௡భห  

 ≤  
1

(݉ − 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡మ

 ෍(݆ − ݏ + ݉ + 2)(௠ିଶ)൫หݍ௝หห݂൫ݔ௝ି௟൯ห + หℎ௝ห൯
ஶ

௝ୀ௦

 

 + 
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡భ

 ෍(݆ − ݏ + ݉ + 2)(௠ିଶ)൫หݍ௝หห݂൫ݔ௝ି௟൯ห + หℎ௝ห൯
ஶ

௝ୀ௦

 

 ≤  
1

(݉ − 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡మ

 ෍(݆ − ݏ + ݉ + 2)(௠ିଶ)൫หݍ௝หܯଵ + หℎ௝ห൯
ஶ

௝ୀ௦
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 + 
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡భ

 ෍(݆ − ݏ + ݉ + 2)(௠ିଶ)൫หݍ௝หܯଵ + หℎ௝ห൯
ஶ

௝ୀ௦

 

 <  
∈
2 +

∈
2  = ∈ . 

Therefore (ܵଶ ݔ) is uniformly Cauchy. By Lemma 1.2, there is an ݔ∗ ∈ Ω such that 
ଵܵݔ∗ + ܵଶݔ∗  = ∗ݔ It is easy to see that . ∗ݔ  = ∗௡ݔ} } is a nonoscillatory solution of the 

equation (1.1). This completes the proof of Theorem 2.1.    
 
Example 2.1. 
Consider the difference equation 

Δଷ ቆ݊Δ൬ݔ௡ −
1
2 +௡ିଵ൰ቇݔ  

1
݊(݊ + 1)(݊ + 2)(݊ + 3)(݊+  ௡ିଵݔ (4

=  
3݊ଶ − 26݊ − 36

(݊ − 1)݊(݊ + 1)(݊ + 2)(݊ + 3)(݊+ 4)  ݊ ≥ 2 . (2.3) 

Here ݎ௡ = ݊ , ௡݌ =  − ଵ
ଶ

 , ௡ݍ = ଵ
௡(௡ାଵ)(௡ାଶ)(௡ାଷ)(௡ାସ)

  and 

ℎ௡ =  ଷ௡మିଶ଺௡ିଷ଺
(௡ିଵ)௡(௡ାଵ)(௡ାଶ)(௡ାଷ)(௡ାସ)

 . It is easy to see that all conditions of Theorem 2.1 
are satisfied and hence the equation (2.3) has a bounded nonoscillatory solution. 
Infact {ݔ௡} =  ቄ1 + ଵ

௡
ቅ is one such solution of equation (2.3). 

 
Theorem 2.2.  
Assume that −∞ < ௡݌  ≡  ܿଶ < −1 and that (2.1) and (2.2) hold. Then equation (1.1) 
has a bounded nonoscillatory solution. 
 
Proof. 
By (2.1) and (2.2), we choose a ܰ ∈ ℕ(݊଴) sufficiently large such that 

−
1
ܿଶ

1
(݉ − 2)! ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ (௠ିଶ)ݏ
ஶ

௦ୀ௡ା௞

ଶܯ|௦ݍ| ) + |ℎ௦|)  ≤ −
(ܿଶ + 1)

2  

where ܯଶ = max
ି(೎మశభ)

మ  ஸ ௫ ஸ ିଶ௖మ
  .{|(ݔ)݂|} 

Let ܤ(݊଴) be the space defined as in the proof of Theorem 2.1. We define a closed, 
bounded and convex subset Ω of ܤ(݊଴) as follows: 

Ω =  ቊݔ = {௡ݔ} ∈ (଴݊)ܤ ∶  −
(ܿଶ + 1)

2 ≤ ௡ݔ ≤ −2ܿଶ, ݊ ∈ ℕ(݊଴)ቋ. 

Define two maps ଵܵ and ܵଶ ∶  Ω →  :as follows (଴݊)ܤ

( ଵܵݔ)௡  =  ቐ−ܿଶ − 1 −
1
௡݌
, ௡ା௞ݔ ݊ ≥ ܰ

 ( ଵܵݔ)ே ,  ݊଴ ≤ ݊ ≤ ܰ,
  

and 
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 (ܵଶݔ)௡  =  ൞ 
1
௡݌

1
(݉− 2)! ෍

1
௦ݎ

ஶ

௦ୀ௡

 ෍ (݆ − ݏ − ݇ +݉− 2)(௠ିଶ)ݍ௝݂൫ݔ௝ି௟൯ − ℎ௝

ஶ

௝ୀ௦ା௞

 ,݊ ≥ ܰ

 (ܵଶݔ)ே  ,  ݊଴ ≤ ݊ ≤ ܰ.

 

We shall show that for any ݔ, ݕ ∈ Ω , ଵܵݔ + ܵଶݕ ∈ Ω . Infact for every ݔ, ݕ ∈ Ω , we 
get 

( ଵܵݔ)௡ + (ܵଶݕ)௡ 

 ≤ −ܿଶ − 1−
1
௡݌
௡ା௞ݔ −

1
௡݌

1
(݉− 2)! ෍

1
௦ݎ

ஶ

௦ୀ௡

 ෍ (݆ − ݏ − ݇ +݉ − 2)(௠ିଶ)൫หݍ௝หห݂൫ݕ௝ି௟൯ห+ หℎ௝ห൯
ஶ

௝ୀ௦ା௞

  

 ≤ −ܿଶ − 1 + 2 −
1
ܿଶ

1
(݉− 2)! ෍

1
௦ݎ

ஶ

௦ୀே

 ෍ ଶܯ௝หݍ൫ห(௠ିଶ)ݏ + หℎ௝ห൯
ஶ

௝ୀ௦ା௞

  

 ≤  ܿଶ − 1 + 2−
(ܿଶ + 1)

2  
 ≤ − 2ܿଶ . 

Furthermore, we have 
( ଵܵݔ)௡ + (ܵଶݕ)௡  

 ≥ −ܿଶ − 1−
1
௡݌
௡ା௞ݔ +

1
௡݌

1
(݉− 2)! ෍

1
௦ݎ

ஶ

௦ୀ௡

 ෍ (݆ − ݏ − ݇ +݉ − 2)(௠ିଶ)൫หݍ௝หห݂൫ݕ௝ି௟൯ห+ หℎ௝ห൯
ஶ

௝ୀ௦ା௞

  

 ≥  −ܿଶ − 1 +
1
ܿଶ

1
(݉− 2)! ෍

1
௦ݎ

ஶ

௦ୀே

 ෍ ଶܯ௝หݍ൫ห(௠ିଶ)ݏ + หℎ௝ห൯
ஶ

௝ୀ௦ା௞

  

 ≥  −ܿଶ − 1 +
ܿଶ − 1

2  =  −
(ܿଶ + 1)

2  . 
Hence 

−
ܿଶ + 1

2 ≤ ( ଵܵݔ)௡ + (ܵଶݕ)௡ ≤ −2ܿଶ ݂ݎ݋ ݊ ∈ ℕ(݊଴) . 
Thus we have proved that  
ଵܵݔ + ܵଶݕ ∈  Ω ݂ݕ,ݔ ݕ݊ܽ ݎ݋ ∈ Ω . 

We shall show that ଵܵ is a contractive mapping on Ω. Infact, for ݔ, ∋ ݕ Ω and ݊ ≥
ܰ we have 

|( ଵܵݔ)௡ − ( ଵܵݕ)௡|  ≤  −
1
௡݌

௡ା௞ݔ| −  |௡ା௞ݕ

 ≤  −
1
ܿଶ
ݔ‖ −  . ‖ݕ

Since 0 < − ଵ
௖మ

< 1 , we conclude that S1 is a contractive mapping on Ω .  
Proceeding, similarly as in the proof of Theorem 2.1, we obtain ܵଶ is uniformly 
Cauchy. By Lemma 1.1, there is an ݔ∗ ∈ Ω such that ଵܵݔ∗ + ܵଶݔ∗  =  ,Clearly . ∗ݔ 
∗ݔ = ∗௡ݔ} } is a bounded nonoscillatory solution of the equation (1.1). This completes 
the proof of Theorem 2.2.    
 
Example 2.2. 
Consider the difference equation 
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Δଷ൫2௡Δ(ݔ௡ − ௡ିଵ)൯ݔ2 +  
1

2௡ ௡ିଵݔ   =  
1

2௡ ൬1 +
1

2௡ିଵ ൰ , ݊ ≥ 1 . (2.4) 

Here ݎ௡ = 2௡ ௡݌, = ௡ݍ, 2−  = ଵ
ଶ೙

 and ℎ௡ = ଵ
ଶ೙
ቀ1 + ଵ

ଶ೙షభ
 ቁ . It is easy to see that all 

conditions of Theorem 2.2 are satisfied and hence the equation (2.4) has a bounded 
nonoscillatory solution. Infact {ݔ௡} =  ቄ1 + ଵ

ଶ೙
ቅ is one such solution of equation (2.4). 

 
Theorem 2.3.  
Assume that 0 ≤ ௡݌   ≤  ܿଷ < 1 and that (2.1) and (2.2) hold. Then equation (1.1) has 
a bounded nonoscillatory solution. 
 
Proof. 
By (2.1) and (2.2), we choose a ܰ ∈ ℕ(݊଴) sufficiently large such that 

1
(݉ − 2)! ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ݏ(௠ିଶ)
ஶ

௦ୀ௡

ଷܯ|௦ݍ| ) + |ℎ௦|)  ≤ 1 − ܿଷ 

where ܯଷ = maxଶ(ଵି௖య) ஸ ௫ ஸ ସ {|݂(ݔ)|}.  
Let ܤ(݊଴) be the space defined as in the proof of Theorem 2.1. We define a closed, 
bounded and convex subset Ω of ܤ(݊଴) as follows: 
Ω = ݔ}  = {௡ݔ} ∈ (଴݊)ܤ ∶ 2(1− ܿଷ)  ≤ ௡ݔ   ≤  4,݊ ∈ ℕ(݊଴)}. 
We define two maps ଵܵ and ܵଶ ∶  Ω →  :as follows (଴݊)ܤ

( ଵܵݔ)௡  =  ൜
3 + ܿଷ − , ௡ି௞ݔ௡݌ ݊ ≥ ܰ

 ( ଵܵݔ)ே ,  ݊଴ ≤ ݊ ≤ ܰ,   

and 

(ܵଶݔ)௡  =  ൞ 
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉ − 2)(௠ିଶ)൫ݍ௝݂൫ݔ௝ି௟൯ − ℎ௝൯
ஶ

௝ୀ௦

 ,݊ ≥ ܰ

 (ܵଶݔ)ே ,  ݊଴ ≤ ݊ ≤ ܰ.

 

We shall show that for any ݔ, ݕ ∈ Ω , ଵܵݔ + ܵଶݕ ∈ Ω . Infact for every ݔ, ݕ ∈ Ω , and 
݊ ≥ ܰ, we obtain 
( ଵܵݔ)௡ + (ܵଶݕ)௡ 

 ≤ 3 + ܿଷ − ௡ି௞ݔ௡݌ +
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉− 2)(௠ିଶ)൫หݍ௝หห݂൫ݕ௝ି௟൯ห+ หℎ௝ห൯
ஶ

௝ୀ௦

  

 ≤ 3 + ܿଷ +
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀே

 ෍ݏ(௠ିଶ)൫หݍ௝หܯଷ + หℎ௝ห൯
ஶ

௝ୀ௦

  

 ≤  3 + ܿଷ + 1− ܿଷ = 4. 
Furthermore, we have 
( ଵܵݔ)௡ + (ܵଶݕ)௡  

 ≥ 3 + ܿଷ − ௡ି௞ݔ௡݌ −
1

(݉− 2)!
 ෍

1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉− 2)(௠ିଶ)൫หݍ௝หห݂൫ݕ௝ି௟൯ห+ หℎ௝ห൯
ஶ

௝ୀ௦

  

 ≥  3 + ܿଷ − 4ܿଷ −
1

(݉ − 2)! ෍
1
௦ݎ

ஶ

௦ୀே

 ෍ݏ(௠ିଶ)൫หݍ௝หܯଷ + หℎ௝ห൯
ஶ

௝ୀ௦
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 ≥  3 + ܿଷ − 4ܿଷ − (1 − ܿଷ)  =  2(1 − ܿଷ) . 
Hence 

2(1− ܿଷ) ≤ ( ଵܵݔ)௡ + (ܵଶݕ)௡ ≤ ݊ ݎ݋݂, 4 ≥ ݊଴ . 
Thus we have proved that  
( ଵܵݔ) + (ܵଶݕ)  ∈  Ω ݂ݕ,ݔ ݕ݊ܽ ݎ݋ ∈ Ω . 
Proceeding, similarly as in the proof of Theorem 2.1, we obtain the mapping ଵܵ is 
a contractive on Ω and the mapping S2 is uniformly Cauchy. By Lemma 1.1, there is 
an ݔ∗ ∈ Ω such that ଵܵݔ∗ + ܵଶݔ∗  = ∗ݔ ,Clearly . ∗ݔ  = ∗௡ݔ} } is a bounded 
nonoscillatory solution of the equation (1.1). This completes the proof of Theorem 
2.3.   
 
Example 2.3. 
Consider the difference equation 

Δଷ ቆ(݊ + 3)Δ൬ݔ௡ +
1

݊ + 1 ௡ିଵ൰ቇݔ +  
6(݊ + 2)ଷݔ௡ିଵଷ

(݊ + 1)ଷ(݊ + 2)(݊ + 3)(݊ + 4)(݊ + 5)  

 =  
6

(݊ + 4)(݊ + 5)(݊ + 6)(݊ + 7) ,݊ ≥ 2 . (2.5) 

Here ݎ௡ = (݊ + ௡݌,(3 =  ଵ
௡ାଵ

௡ݍ,  = ଺(௡ାଶ)య௫೙షభయ

(௡ାଵ)య(௡ାଶ)(௡ାଷ)(௡ାସ)(௡ାହ)
 and ℎ௡ =

଺
(௡ାସ)(௡ାହ)(௡ା଺)(௡ା଻)

 . It is easy to see that all conditions of Theorem 2.3 are satisfied 
and hence the equation (2.5) has a bounded nonoscillatory solution. Infact {ݔ௡} =
 ቄ௡ାଶ
௡ାଷ

ቅ is one such solution of equation (2.5). 
 
Theorem 2.4.  
Assume that 1 <  ܿସ  ≡ ௡݌   < ∞ and that (2.1) and (2.2) hold. Then equation (1.1) 
has a bounded nonoscillatory solution. 
 
Proof. 
By (2.1) and (2.2), we choose a ܰ ∈ ℕ(݊଴) sufficiently large so that 

1
ܿସ

1
(݉− 2)! ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ (௠ିଶ)ݏ
ஶ

௦ୀ௡ା௞

ସܯ|௦ݍ| ) + |ℎ௦|) < ܿସ − 1 

where ܯସ = maxଶ(௖రିଵ) ஸ ௫ ஸ ସ௖ర   .{|(ݔ)݂|} 
Let ܤ(݊଴) be the space defined as in the proof of Theorem 2.1. We define a closed, 
bounded and convex subset Ω of ܤ(݊଴) as follows: 

Ω = ݔ}  = {௡ݔ} ∈ (଴݊)ܤ ∶ 2(ܿସ − 1)  ≤ ௡ݔ  ≤  4ܿସ , ݊ ∈ ℕ(݊଴)}. 
Define two maps ଵܵ and ܵଶ ∶  Ω →  :as follows (଴݊)ܤ

( ଵܵݔ)௡  =  ቐ3ܿସ + 1−
1
௡݌
௡ା௞ݔ  ,݊ ≥ ܰ

 ( ଵܵݔ)ே ,  ݊଴ ≤ ݊ ≤ ܰ,
  

and 
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(ܵଶݔ)௡  =  ൞ 
1

(݉− ௡݌!(2
 ෍

1
௦ݎ

ஶ

௦ୀ௡

 ෍ (݆ − ݏ − ݇ + ݉− 2)(௠ିଶ)൫ݍ௝݂൫ݔ௝ି௟൯ + ℎ௝൯
ஶ

௝ୀ௦ା௞

 , ݊ ≥ ܰ

 (ܵଶݔ)ே  ,  ݊଴ ≤ ݊ ≤ ܰ.

 

We shall show that for any ݔ, ݕ ∈ Ω , ଵܵݔ + ܵଶݕ ∈ Ω . Infact for every ݔ, ݕ ∈ Ω and 
݊ ≥ ܰ, we obtain 
( ଵܵݔ)௡ + (ܵଶݕ)௡ 

 ≤ 3ܿସ + 1−
1
௡݌
௡ା௞ݔ +

1
(݉− ௡݌!(2

 ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍ (݆ − ݏ − ݇ +݉− 2)(௠ିଶ)൫หݍ௝หห݂൫ݕ௝ି௟൯ห+ หℎ௝ห൯
ஶ

௝ୀ௦ା௞

  

 ≤ 3ܿସ + 1 +
1

(݉ − 2)! ܿସ
 ෍

1
௦ݎ

ஶ

௦ୀே

 ෍ ସܯ௝หݍ൫ห(௠ିଶ)ݏ + หℎ௝ห൯
ஶ

௝ୀ௦ା௞

  

 ≤ 3ܿସ + 1 + ܿସ − 1 = 4ܿସ . 
Furthermore, we have 
( ଵܵݔ)௡ + (ܵଶݕ)௡  

 ≥ 3ܿସ + 1 −
1
௡݌
௡ା௞ݔ −

1
(݉− ௡݌!(2

 ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍ (݆ − ݏ − ݇ +݉− 2)(௠ିଶ)൫หݍ௝หห݂൫ݕ௝ି௟൯ห + หℎ௝ห൯
ஶ

௝ୀ௦ା௞

 

 ≥  3ܿସ + 1 − 4 −
1

(݉ − 2)! ܿସ
 ෍

1
௦ݎ

ஶ

௦ୀே

 ෍ ସܯ௝หݍ൫ห(௠ିଶ)ݏ + หℎ௝ห൯
ஶ

௝ୀ௦ା௞

  

 ≥  3ܿସ − 3 − (ܿସ − 1)  =  2(ܿସ − 1) . 
Hence 

2(ܿସ − 1)  ≤ ( ଵܵݔ)௡ + (ܵଶݕ)௡ ≤ 4ܿସ , for ݊ ∈ ℕ(݊଴) . 
Thus we have proved that  
( ଵܵݔ) + (ܵଶݕ)  ∈  Ω for any ݔ, ∋ ݕ Ω . 
Proceeding, similarly as in the proof of Theorem 2.1, we obtain the mapping ଵܵ is 
a contractive on Ω and the mapping S2 is uniformly Cauchy. By Lemma 1.1, there is 
an ݔ∗ ∈ Ω such that ଵܵݔ∗ + ܵଶݔ∗  = ∗ݔ ,Clearly . ∗ݔ  = ∗௡ݔ} } is a bounded 
nonoscillatory solution of the equation (1.1). This completes the proof of Theorem 
2.4.   
 
Example 2.4. 
Consider the difference equation 

Δଷ൫3௡Δ(ݔ௡ + ௡ିଵ)൯ݔ2 +  ଵ
ଷ೙
௡ିଵݔ  = ଵ

ଷ೙
ቀ1 + ଵ

ଷ೙షభ
ቁ  , ݊ ≥ 2 .   (2.6) 

Here ݎ௡ = 3௡ ௡݌, = ௡ݍ, 2  = ଵ
ଷ೙

 and ℎ௡ = ଵ
ଷ೙
ቀ1 + ଵ

ଷ೙షభ
ቁ . It is easy to see that all 

conditions of Theorem 2.4 are satisfied and hence the equation (2.6) has a bounded 
nonoscillatory solution. Infact {ݔ௡} =  ቄ1 + ଵ

ଷ೙
ቅ is one such solution of equation (2.6). 

 
Theorem 2.5.  
Assume that  ݌௡ ≡ 1 and that (2.1) and (2.2) hold. Then equation (1.1) has a bounded 
nonoscillatory solution. 
Proof. 
By (2.1) and (2.2), we choose a ܰ > ݊଴ sufficiently large such that 
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1
(݉ − 2)! ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ (௠ିଶ)ݏ
ஶ

௦ୀ௡ା௞

ହܯ|௦ݍ| ) + |ℎ௦|) ≤ 1 

where ܯହ = maxଶ ஸ ௫ ஸ ସ {|݂(ݔ)|}.  
We define a closed, bounded and convex subset Ω of ܤ(݊଴) as follows: 
Ω = ݔ}  = {௡ݔ} ∈ (଴݊)ܤ ∶ 2 ≤ ௡ݔ   ≤  4 ,݊ ∈ ℕ(݊଴)}. 
Define a map ܵ ∶  Ω →  :as follows (଴݊)ܤ

௡(ݔܵ)   =  

⎩
⎨

⎧
 3 +

1
(݉− 2)!  ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ ෍ ݏ) − ݊ +݉− 2)(௠ିଶ)(ݍ௦݂(ݔ௦ି௟) + ℎ௦)
௡ାଶ௝௞

௦ୀ௡ା(ଶ௝ିଵ)௞

 ,
ஶ

௝ୀଵ

 ݊ ≥ ܰ

ே(ݔܵ)   ,  ݊଴ ≤ ݊ ≤ ܰ.

 

We shall show that for any ܵΩ ⊂ Ω for every ݔ ∈ Ω and ݊ ≥ ܰ, we get 

௡(ݔܵ)  ≤ 3 +
1

(݉ − 2)!  ෍
1
௡ݎ

ஶ

௡ୀே

 ෍ ෍ ݏ) − ݊ + ݉− 2)(௠ିଶ)(|ݍ௦||݂(ݔ௦ି௟)| + |ℎ௦|)
௡ାଶ௝௞

 ௦ୀ௡ା(ଶ௝ିଵ)௞

 
ஶ

௝ୀଵ

  

 ≤ 3 +
1

(݉− 2)! ෍
1
௡ݎ

ஶ

௡ୀே

 ෍  ෍ ହܯ|௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
௡ାଶ௝௞

௦ୀ௡ା(ଶ௝ିଵ)௞

 
ஶ

௝ୀଵ 

  

 ≤ 4 .  
Furthermore, we have 

௡(ݔܵ) ≥ 3 −
1

(݉− 2)!
 ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ ෍ ݏ) − ݊ +݉ − 2)(௠ିଶ)(|ݍ௦||݂(ݔ௦ି௟)| + |ℎ௦|)
௡ାଶ௝௞

 ௦ୀ௡ା(ଶ௝ିଵ)௞

 
ஶ

௝ୀଵ

 

 ≥ 3 −
1

(݉− 2)! ෍
1
௡ݎ

ஶ

௡ୀே

 ෍  ෍ ହܯ|௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
௡ାଶ௝௞

௦ୀ௡ା(ଶ௝ିଵ)௞

ஶ

௝ୀଵ 

 

 ≥ 2 .  
Hence, ܵΩ ⊂ Ω .  
Proceeding, similarly as in the proof of Theorem 2.1, we obtain the mapping ܵ is 
uniformly Cauchy. By Lemma 1.1, there is an ݔ∗ ∈ Ω such that ܵݔ∗  =  that is , ∗ݔ 

∗௡ݔ  =  

⎩
⎨

⎧
 3 +

1
(݉− 2)! ෍

1
௡ݎ

ஶ

௡ୀே

 ෍ ෍ ݏ) − ݊ +݉− 2)(௠ିଶ)(ݍ௦݂(ݔ௦ି௟)− ℎ௦)
௡ାଶ௝௞

௦ୀ௡ା(ଶ௝ିଵ)௞

 ,
ஶ

௝ୀଵ

 ݊ ≥ ܰ

∗ேݔ  ,  ݊଴ ≤ ݊ ≤ ܰ.

 

It follows that  

௡ݔ + ௡ି௞ݔ  = 6 +
1

(݉− 2)! ෍
1
௦ݎ

ஶ

௦ୀ௡

 ෍(݆ − ݏ + ݉ − 2)(௠ିଶ)(ݍ௦݂(ݔ௦ି௟)− ℎ௦)
ஶ

௝ୀ௦

 . 

Clearly, ݔ∗ = ∗௡ݔ} } is a bounded nonoscillatory solution of the equation (1.1). This 
completes the proof of Theorem 2.5.   
 
Example 2.5. 
Consider the difference equation 

 Δଷ൫2௡Δ(ݔ௡ + ௡ିଵ)൯ݔ +  
6

݊(݊ + 1)(݊ + ௡ିଵݔ(2  =
6(2௡ + 2)

2௡݊(݊ + 1)(݊ + 2) , ݊ ≥ 2 . (2.7) 

Here ݎ௡ = 2௡ ௡݌, = ௡ݍ, 1  = ଺
௡(௡ାଵ)(௡ାଶ)

 and ℎ௡ = ଺(ଶ೙ାଶ)
ଶ೙௡(௡ାଵ)(௡ାଶ)

 . It is easy to see that 
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all conditions of Theorem 2.5 are satisfied and hence the equation (2.7) has a bounded 
nonoscillatory solution. Infact {ݔ௡} =  ቄ1 + ଵ

ଶ೙
ቅ is one such solution of equation (2.7). 

 
Theorem 2.6.  
Assume that ݌௡ ≡  −1 and that 

෍
1
௡ݎ

ஶ

௡ୀ௡బ

 ෍ݏ(௠ିଵ)
ஶ

௦ୀ௡

|௦ݍ|  < ∞  (2.8) 

and  

෍
1
௡ݎ

ஶ

௡ୀ௡బ

 ෍ݏ(௠ିଵ)
ஶ

௦ୀ௡

 |ℎ௦| < ∞ .  (2.9) 

Then equation (1.1) has a bounded nonoscillatory solution. 
 
Proof. 
First note that the assumptions (2.8) and (2.9) are equivalent to  

෍
1
௡ݎ

ஶ

௡ୀ௡బ

 ෍ ෍ (௠ିଶ)ݏ
ஶ

௦ୀ௡ା௝௞

|௦ݍ| 
ஶ

௝ୀ଴

< ∞, (2.10) 

and 

෍
1
௡ݎ

ஶ

௡ୀ௡బ

 ෍ ෍ (௠ିଶ)ݏ
ஶ

௦ୀ௡ା௝௞

 |ℎ௦|
ஶ

௝ୀ଴

< ∞  (2.11) 

respectively. We choose a sufficiently large ܰ ∈ ℕ(݊଴) such that 
1

(݉ − 2)! ෍
1
௡ݎ

ஶ

௡ୀே

 ෍ ෍ (௠ିଶ)ݏ
ஶ

௦ୀ௡ା௝௞

଺ܯ|௦ݍ| ) + |ℎ௦|)
ஶ

௝ୀଵ

 ≤ 1 

where ܯ଺ = max଴ ஸ ௫ ஸଵ {|݂(ݔ)|}.  
We define a closed, bounded and convex subset Ω of ܤ(݊଴) as follows, 
Ω = ݔ}  = {௡ݔ} ∈ (଴݊)ܤ ∶  2 ≤ ௡ݔ ≤ 4,݊ ∈ ℕ(݊଴)}. 
Define a map ܵ ∶  Ω →  :as follows (଴݊)ܤ

௡(ݔܵ)  =  ൞ 
3−

1
(݉− 2)! ෍

1
௡ݎ

ஶ

௡ୀ௡బ

 ෍  ෍ ݏ) − ݊ + ݉− 2)(௠ିଶ)(ݍ௦݂(ݔ௦ି௟) + ℎ௦)
ஶ

௦ୀ௡ା௝௞

 ,
ஶ

௝ୀଵ

 ݊ ≥ ܰ

ே(ݔܵ)   ,  ݊଴ ≤ ݊ ≤ ܰ.

 

We shall show that for any ܵΩ ⊂ Ω . Infact for every ݔ ∈ Ω and ݊ ≥ ܰ, we get 

௡(ݔܵ)  ≤ 3 +
1

(݉− 2)!
 ෍

1
௡ݎ

ஶ

௡ୀ௡బ

 ෍  ෍ ݏ) − ݊ + ݉− 2)(௠ିଶ)(|ݍ௦||݂(ݔ௦ି௟)| + |ℎ௦|)
ஶ

௦ୀ௡ା௝௞

 
ஶ

௝ୀଵ

  

 ≤ 3 +
1

(݉− 2)! ෍
1
௡ݎ

ஶ

௡ୀே

 ෍  ෍ ଺ܯ|௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
ஶ

௦ୀ௡ା௝௞

 
ஶ

௝ୀଵ

  

 ≥ 2 .  
Hence, ܵΩ ⊂ Ω . We now show that S is continuous. 
Let ൛ݔ(௜)ൟ be a sequence in Ω such that ݔ(௜) → ݔ = ݅ as {௡ݔ} → ∞ .  
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Since Ω is closed, ݔ = {௡ݔ} ∈ Ω . Furthermore, for ݊ ≥ ܰ we have, 
ቚ൫ܵ(௜) ݔ൯௡ −   ௡ቚ(ݔ ܵ)

 ≤  
1

(݉ − 2)! ෍
1
௡ݎ

ஶ

௡ୀ௡బ

 ෍  ෍ |௦ݍ|(௠ିଶ)ݏ ቚ݂ቀݔ௦ି௟
(௜) ቁ − ቚ(௦ି௟ݔ)݂

ஶ

௦ୀ௡ା௝௞

ஶ

௝ୀଵ

 . 

Since  
ቚ݂ቀݔ௦ି௟

(௜) ቁ − ቚ(௦ି௟ݔ)݂  → ݅ ݏܽ 0 → ∞ , 
we conclude that 

lim
௜→ஶ

ቛ൫ܵ(௜) ݔ൯௡ − ௡ቛ(ݔ ܵ) = 0 . 
This means that S is continuous. Now, we show that S is uniformly Cauchy. By (2.10) 
and (2.11), for any ∈> 0 , choose ଵܰ > ܰ large enough so that  

1
(݉ − 2)! ෍

1
௡ݎ

ஶ

௡ୀேభ

 ෍  ෍ ଺ܯ|௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
ஶ

௦ୀேభା௝௞

ஶ

௝ୀଵ

 <  
∈
2 . 

Then for ݔ ∈ Ω , ݊ଶ ≥ ݊ଵ ≥ ܰ  
ห(ܵ ݔ)௡మ −   ௡భห(ݔ ܵ)

 ≤  
1

(݉ − 2)! ෍
1
௡ݎ

ஶ

௡ୀ௡మ

෍ ෍ |(௦ି௟ݔ)݂||௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
ஶ

 ௦ୀ௡ା௝௞

ஶ

௝ୀଵ

  

 + 
1

(݉− 2)! ෍
1
௡ݎ

ஶ

௡ୀ௡భ

 ෍ ෍ |(௦ି௟ݔ)݂||௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
ஶ

 ௦ୀ௡ା௝௞

ஶ

௝ୀଵ

 

 ≤  
1

(݉ − 2)! ෍
1
௡ݎ

ஶ

௡ୀ௡మ

෍ ෍ ଺ܯ|௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
ஶ

 ௦ୀ௡ା௝௞

ஶ

௝ୀଵ

  

 + 
1

(݉− 2)! ෍
1
௡ݎ

ஶ

௡ୀ௡భ

 ෍ ෍ ଺ܯ|௦ݍ|)(௠ିଶ)ݏ + |ℎ௦|)
ஶ

 ௦ୀ௡ା௝௞

ஶ

௝ୀଵ

 

 <  
∈
2 +

∈
2  = ∈ . 

Therefore ܵݔ is uniformly Cauchy. By Lemma 1.2, there is an ݔ∗ ∈ Ω such that 
∗ݔܵ  =   That is . ∗ݔ 

∗௡ݔ  =  ൞ 
3−

1
(݉ − 2)!  ෍

1
௡ݎ

ஶ

௡ୀ௡బ

 ෍ ෍ ݏ) − ݊ + ݉− 2)(௠ିଶ)(ݍ௦݂(ݔ௦ି௟∗ )− ℎ௦)
ஶ

 ௦ୀ௡ା௝௞

 ,
ஶ

௝ୀଵ

 ݊ ≥ ܰ

∗ேݔ  ,  ݊଴ ≤ ݊ ≤ ܰ.

 

It follows that  

௡ݔ − ௡ି௞ݔ  = −
1

(݉ − 2)!
 ෍

1
௡ݎ

ஶ

௡ୀ௡బ

 ෍(ݏ − ݊ +݉ − 2)(௠ିଶ)(ݍ௦݂(ݔ௦ି௟) − ℎ௦)
ஶ

௦ୀ௡

 ,݊ ≥ ܰ. 

Clearly, ݔ∗ = ∗௡ݔ} } is a bounded nonoscillatory solution of the equation (1.1). This 
completes the proof of Theorem 2.6.  
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Example 2.6. 
Consider the difference equation 

Δଷ൫3௡Δ(ݔ௡ − ௡ିଶ)൯ݔ +  
24

݊(݊ + ௡ିଶݔ (1  =  
24(3௡ + 9)
3௡݊(݊ + 1) , ݊ ≥ 2 . (2.12) 

Here ݎ௡ = 3௡ ,݌௡ = ௡ݍ, 1−  =  ଶସ
௡(௡ାଵ)

 and ℎ௡ =  ଶସ(ଷ೙ାଽ)
ଷ೙௡(௡ାଵ)

 . It is easy to see that all 
conditions of Theorem 2.6 are satisfied and hence the equation (2.12) has a bounded 
nonoscillatory solution. Infact {ݔ௡} =  ቄ1 + ଵ

ଷ೙
ቅ is one such solution of equation 

(2.12). 
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