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Abstract

In this paper, the authors discuss the asymptotic behavior of solutions of the gener-
alized nonlinear difference equation

��(p(k)��u(k)) + f (k)F (u(k)) = g(k), (1)

k ∈ [a, ∞), where, the functions p, f , F and g are defined in their domain of
definition and � is a positive real. Further, uF (u) > 0 for u �= 0, p(k) > 0 for
all k ∈ [a, ∞) for some a ∈ [0, ∞) and for all 0 ≤ j < �, Ra+j ,k → ∞, where

Rt+j ,k =
k−�−t−j

�∑
r=0

1

p(t + j + r�)
, t ∈ [a, ∞) and k ∈ N�(t + j + �).
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1. Introduction

The basic theory of difference equations is based on the operator � defined as �u(k) =
u(k + 1) − u(k), k ∈ N = {0, 1, 2, 3, · · · }. Eventhough many authors ([1], [10]-[12])
have suggested the definition of � as

�u(k) = u(k + �) − u(k), k ∈ R, � ∈ N(1), (2)

no significant progress is noticed on this line. But recently, when E. Thandapani, M.M.S.
Manuel and G.B.A. Xavier considered the definition of � as given in (2), the theory of
difference equations flourished in a different direction (see [4]-[5]). For convenience,
the operator � defined by (2) was labelled as �� and by defining its inverse �−1

� , many
interesting results and applications in number theory (See [4],[7]-[9]) were obtained. By
extending the study related to sequences of complex numbers and � to be real, some
new qualitative properties like rotatory, expanding, shrinking, spiral and weblike were
analysed for the solutions of difference equations involving ��. The results obtained
using �� can be found in ([4-9]).

In [3], John R. Graef worked on Oscillation, nonoscillation, and growth of solutions
of nonlinear functional differential equations of arbitrary order and Blazej Szmanda [2]
obtained the discrete analogous of [3]. In [2] the author considered � = 1 and k ∈ N(a)
for an integer a but, in this paper the theory is extended for all real k ∈ [a, ∞) and
for any real � and oscillation, nonoscillation and growth of solutions of the generalized
nonlinear difference equation (1) is discussed.

Throughout this paper we make use of the following notations.

(a) N = {0, 1, 2, 3, . . . }, N(a) = {a, a + 1, a + 2, . . . },
(b) N�(j ) = {j , j + �, j + 2�, . . . }.
(c) �x� upper integer part of x.

2. Preliminaries

Definition 2.1. [4] Let u(k), k ∈ [0, ∞) be a real or complex valued function and
� ∈ (0, ∞). Then, the generalized difference operator �� is defined as

��u(k) = u(k + �) − u(k). (3)

Similarly, the generalized difference operator of the rth kind is defined as

�r
�u(k) = ��(��( . . . (��u(k)) . . . ))︸ ︷︷ ︸

r times

. (4)



Asymptotic behavior of solutions of generalized ... 15

Definition 2.2. [4] Let u(k), k ∈ [0, ∞) be a real or complex valued function and
� ∈ (0, ∞). Then, the inverse of �� denoted by �−1

� is defined as follows.

If ��v(k) = u(k), then v(k) = �−1
� u(k) + cj , (5)

where cj is a constant for all k ∈ N�(j ), j = k −
[
k

�

]
�.

In general �−n
� u(k) = �−1

� (�−(n−1)
� u(k)) for n ∈ N(2).

Lemma 2.3. [4] If the real valued function u(k) is defined for all k ∈ [a, ∞), then

�−1
� u(k) =

[
k−a

�

]
∑
r=1

u(k − r�) + cj , (6)

where cj is a constant for all k ∈ N�(j ), j = k − a − [k − a

�

]
�.

Theorem 2.4. If ��v(k) = u(k) for k ∈ [k2, ∞) and j = k − k2 − [k − k2

�

]
�, then

v(k) − v(k2 + j ) =

[
k−k2−j−�

�

]
∑
r=0

u(k2 + j + r�).

Proof. The proof follows by Definition 2.2, Lemma 2.4 and cj = v(k2 + j ). �

Definition 2.5. The solution u(k) of (1) is called oscillatory if for any k1 ∈ [a, ∞) there
exists a k2 ∈ N�(k1) such that u(k2)u(k2 +�) ≤ 0. The difference equation itself is called
oscillatory if all its solutions are oscillatory. If the solution u(k) is not oscillatory, then
it is said to be nonoscillatory (i.e. u(k)u(k + �) > 0 for all k ∈ [k1, ∞)).

3. Main Results

In this section, we present conditions for the oscillation and nonoscillation of equation
(1).

Theorem 3.1. Consider the generalized difference equation

��(p(k)��u(k)) + f (k)F (u(k)) = 0 (7)

and assume that in addition to the given hypotheses on the functions p, f and F , |F (u)|
is bounded away from zero if |u| is bounded away from zero, f (k) ≥ 0 for all k ∈ [a, ∞)

and
∞∑

r=0

f (k1 + j + r�) = ∞, then equation (7) is oscillatory.
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Proof. Let u(k) be a nonoscillatory solution of (1) and suppose that u(k) > 0 eventually.
From the given hypothesis, there exists a positive constant c such that F (u(k)) ≥ c for
all k ∈ [k2, ∞).

On the other hand from (1), we have

��(p(k)��u(k)) + cf (k) ≤ 0, k ∈ [k1, ∞) (8)

and hence by Definition 2.2 and Theorem 2.4 we obtain

p(k)��u(k) ≤ −c

k−j−k2−�

�∑
r=0

f (k2 + j + r�) → −∞ as k → ∞.

We then have ��u(k) ≤ −1/p(k). Again by Definition 2.2 and Theorem 2.4,

u(k) ≤ −
k−�−a−j

�∑
r=0

1

p(a + j + r�)
→ −∞ as k → ∞,

k ∈ [k2, ∞), where j = k − k2 −
[
k − k2

�

]
�. This leads to a contradiction to our

assumption that u(k) > 0 eventually. The case u(k) < 0 eventually can be treated
similarly. �

Example 3.2. For the generalized difference equation ��(k��u(k))−u(k)(9k+6�) = 0,
and for p(k) = k, f = (9k + 6�), F (u(k)) = −u(k), the conditions of Theorem 3.1 hold

and hence the generalized difference equation is oscillatory. Infact u(k) = ( − 2)

⌈
k
�

⌉
is

one such solution.

Theorem 3.3. Suppose that the following conditions hold

(i) f (k) ≥ b > 0 for all k ∈ [a, ∞)

(ii) |F (u)| is bounded away from zero if |u| is bounded away from zero

(iii) the function G(k) =
k−�−a−j

�∑
r=0

g(a + j + r�) is bounded on [a, ∞).

Then, for every nonoscillatory solution u(k) of (1), lim
k→∞ u(k) = 0.

Proof. In system form, equation (1) is equivalent to

��u(k) = (v(k) + G(k))/p(k) (9)

��v(k) = −f (k)F (u(k)). (10)
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If u(k) is a nonoscillatory solution of (1), then we can assume that u(k) > 0 eventually
(the case u(k) < 0 can be similarly treated). First, we shall show that lim inf

k→∞ u(k) = 0.

If not, then there exist k1 ≥ a and a positive constant c1 such that F (u(k)) ≥ c1 for all
k ∈ [k1, ∞). From (10) it follows that

v(k + �) − v(k1) = −
k−k1−j

�∑
r=0

f (k1 + j + r�)F (u(k1 + j + r�))

≤ −c1

k−k1−j

�∑
r=0

f (k1 + j + r�) → −∞ as k → ∞.

We then have ��u(k) = (v(k) + G(k))/p(k) ≤ −1/p(k) for all k ∈ [k2, ∞), for some

k2 ≥ k1. This implies that u(k) ≤ u(k2) −
k−�−k2−j

�∑
r=0

1/p(k2 + j + r�) → −∞ as k → ∞.

But, this contradicts the fact that u(k) is eventually positive. From the above argument,
we also have

∞∑
r=0

f (k1 + j + r�)F (u(k1 + j + r�)) < ∞. (11)

If lim sup
k→∞

u(k) = γ > 0, then there exists a sequence {kt} ⊆ [0, ∞), such that u(kt ) →
γ as t → ∞. Hence, there is t(0)(kt(0) ≥ a) such that u(kt ) ≥ γ /2 and F (u(kt )) ≥ c2

for all t ≥ t(0), where c2 is a positive constant. But, then we have

kt−kt(0)−j

�∑
r=0

f (kt(0) + j + r�)F (u(kt(0) + j + r�))

≥
t−kt(0)−j

�∑
r=0

f (kt(0)+j+r�)F (u(kt(0)+j+r�))

≥ bc1(t − t(0) + �) → ∞

as t → ∞, so that
∞∑

r=0

f (k1 + j + r�)F (u(k1 + j + r�)) = ∞ which contradicts (11).

This completes the proof. �

Example 3.4. For the generalized difference equation

��(k��u(k)) + k2(2k2� + 5k�2 + �3)u(k)

(k + �)2(k + 2�)2
= 2�(k − �)

k(k + �)2
,
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and for p(k) = k, f = 2k2� + 5k�2 + �3, F (u(k)) = k2u(k)

(k + �)2(k + 2�)2
, the conditions

of Theorem 3.3 hold and hence all nonoscillatory solutions of the generalized difference

equation satisfies lim
k→∞ u(k) = 0. Infact one such solution is u(k) = 1

k2
.

Theorem 3.5. In addition to the condition (ii) let

(iv) f (k) > 0 for all k ∈ [a, ∞), and
∞∑

r=0

f (k1 + j + r�) = ∞ and

(v) lim
k→∞ g(k)/f (k) = 0.

Then, for every nonoscillatory solution u(k) of (1), lim inf
k→∞ |u(k)| = 0.

Proof. Let u(k) be a nonoscillatory solution of (1), say, u(k) > 0 for all k ∈ [k1, ∞),
where k1 ≥ a. Then, u(k) is also a nonoscillatory solution of ��(p(k)��u(k))+ [f (k)−
g(k)/F (u(k))]F (u(k)) = 0, k ∈ [k1, ∞). Suppose that lim inf

k→∞ u(k) > 0, then by the

hypotheses, there exists a positive constant c such that F (u(k)) ≥ c for all k ∈ [k1, ∞).

Thus, by (v) there exists a k2 ≥ k1 such that
g(k)

(f (k)F (u(k)))
<

1

2
for all k ∈ [k2, ∞).

This implies that

f (k) − g(k)

F (u(k))
= f (k)

[
1 − g(k)

(f (k)F (u(k)))

] ≥ 1

2
f (k), k ∈ [k2, ∞).

So, from (iv) we get

∞∑
r=0

[
f (k1 + j + r�) − g(k1 + j + r�)

F (u(k1 + j + r�))

] = ∞.

But, then by Theorem 3.1, u(k) must be oscillatory. This contradiction completes the
proof. �

Example 3.6. For the generalized difference equation

��(k��u(k)) + (k + �)2(2k2� + 7k�2 + 5�3)u(k)

(k + 3�)2(k + 2�)2
= k�(2k − 3�)

(k + 2�)2(k + �)2
,

and for p(k) = k, f = 2k2�+7k�2 +5�3, F (u(k)) = (k + �)2u(k)

(k + 3�)2(k + 2�)2
, the conditions

of Theorem 3.3 hold and hence all nonoscillatory solutions of the generalized difference

equation satisfies lim
k→∞ |u(k)| = 0. Infact one such solution is u(k) = 1

(k + �)2
.

Theorem 3.7. In addition to the condition (iv) let
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(vi) F (u) is continuous at u = 0 and

(vii) lim inf
k→∞

k−t−j
�∑

r=0
g(t + j + r�)

k−t−j
�∑

r=0
f (t + j + r�)

≥ c > 0 for every t ∈ [a, ∞).

Then, no solution of (1) approaches zero.

Proof. Let u(k) be a solution of (1) which approaches zero. Then, by the hypotheses on
the function F , there exists a k1 ≥ a such that F (u(k)) < c/4 for all k ∈ [k1, ∞). Hence,
from the equation (1) we have

p(k + �)��u(k + �) − p(k1 + j )��u(k1 + j )

≥ −c

4

k−k1−j

�∑
r=0

f (k1 + j + r�) +
k−k1−j

�∑
r=0

g(k1 + j + r�),

which by (vii) yields

p(k + �)��u(k + �)
k−k1−j

�∑
r=0

f (k1 + j + r�)

− p(k1 + j )��u(k1) + j
k−k1−j

�∑
r=0

f (k1 + j + r�)

≥ −c

4
+

k−k1−j

�∑
r=0

g(k1 + j + r�)

k−k1−j

�∑
r=0

f (k1 + j + r�)

≥ −c

4
+ c

2
= c

4
> 0,

for all large k. Now, because of (iv) the above inequality implies that
p(k)��u(k) → ∞ as k → ∞, which in turn leads to the contradictive conclusion that
u(k) → ∞ as k → ∞. �

Example 3.8. For the generalized difference equation

��(k��u(k)) − ku(k) = �2

⌈
k
�

⌉
,

and for F (u(k)) = −ku(k), f = 1, g = �2

⌈
k
�

⌉
, the conditions of Theorem 3.7 hold and

hence no solution of the generalized difference equation approaches zero. u(k) = 2

⌈
k
�

⌉

is one such solution.

Remark 3.9. If we replace conditions (iv) and (vii) by
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(iv)′ f (k) < 0 for all k ∈ [a, ∞), and
∞∑

r=0

f (t + j + r�) = −∞

(v)′ lim sup
k→∞

k−t−j
�∑

r=0

g(t + j + r�)/

k−t−j
�∑

r=0

f (t + j + r�) ≤ c < 0 for every t ∈ [a, ∞),

then, the assertion of Theorem 3.7 holds.

Theorem 3.10. Suppose that the following conditions hold

(viii) F (u) is locally bounded in [0, ∞) and

(ix)
∞∑

r=0

|f (t + j + r�)| < ∞,
∞∑

r=0

g(t + j + r�) = ∞.

Then, every solution of (1) is unbounded.

Proof. Let u(k) be a bounded solution of (1), i.e. |u(k)| < M , where M is a positive
constant. Then, by (viii) there exist constants L1 and L2 such that L1 ≤ F (u(k)) ≤ L2.
But then, from (1) and (ix), we obtain

p(k + �)��u(k + �) − p(a)��u(a)

≥
k−a−j

�∑
r=0

g(a + j + r�) − L2

k−a−j
�∑

r=0

f +(a + j + r�) − L1

k−a−j
�∑

r=0

f −(a + j + r�)

which tends to ∞, as k → ∞. However, this leads to that u(k) → ∞. This contradiction
completes the proof. �

Example 3.11. For the generalized difference equation

��(
1

k
��u(k)) + u(k)(k + �) + �3

k(k + �)
= k,

and for F (u(k)) = u(k)(k + �) + �3, f = 1

k(k + �)
, the conditions of Theorem 3.10 hold

and hence all the solutions of the generalized difference equation are unbounded. Infact
u(k) = k2 is one such solution.

Remark 3.12. It is clear that Theorem 3.10 holds if we replace (ix) by
∞∑

r=0

g(t+j+r�) =
−∞.
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