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Abstract 

 

We study SIR epidemic model with varying total population size and constant 

immigration rate. We derive the sufficient conditions on parameters of the 

system to guarantee that the equilibrium point of the system are locally 

asymptotically stable or globally asymptotically stable.  If the disease free 

equilibrium point is stable then the disease will not affect the population in the 

system suppose if the endemic equilibrium point is stable the number of 

infective will not change which means the infective rate equals to the recovery 

rate. 

 

 

Introduction 

Mathematical modeling of infectious disease has a long theory. The Starting point is 

Generally taken to be a paper by Daniel Bernoelli (Bernolli 1760) on the prevention 

of smallpox by inculcation; an account of Bernulli’s model based analysis of the data 
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can be found in Daley and Gani (1999) However as Bailey (1975)points at it was 

another hundred years or so before the physical basis for the case of infectious 

diseases become well – established. thus the pace of progress only really picked up 

early in the 20th centaury with the work of people such as  Hamer (1906); Ross (Ross 

1911, 1916) and K eramack and Mckendrick(1927) which established the principle of 

mass action or homogenous mixing – by which the rate of new infection is proportion 

to the current numbers of susceptible and infective in the population; and the new – 

familiar deterministic equations for the general epidemic model. Homogenously 

mixing models are also referred to as mean field models. Many of the epidemic 

models in use today have this general epidemic (SIR) model or its stochastic counter 

part, as their basis and thus it can be used to illustrate many of the main issues 

In the SIR mode if x(t), y(t) and z(t) represent respectively  the number of susceptible, 

infective and removed individuals in the population at time t, then  
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The variables x, y and z are not restricted to integer values and thus it is only 

approximate to use this deterministic model for large populations. In some version of 

the model the parameter α above is replaced by nβ, but the formulation given here is 

more appropriate when n infection is spread by direct contact and the individual 

makes potentially infectious contacts at a fixed rate α regardless of the population 

size. when n is fixed the distinction is not important  but confusion may arise if β is 

regarded as fixed if the limiting situation when nα is considered . The latter parameter 

is appropriate if the variable x, y and z represent population proportions. The 

parameter γ can be interpreted as the reciprocal of the mean infection partied. In the 

natural stochastic formulation of this model infectious periods are independently and 

exponentially with distributed with Parameter γ. 

In the deterministic SIR model the number of infective  grows as long as the 

proportion of susceptible in the population exceeds γ/α=1/R0 where the reproduction 

ratio R0= γ/α represents the mean number of effective contacts made by an infective 

during an infectious period.  

In this work we assume that the new number of immigration population may be 

susceptible and infective. Moreover we will use the standard incidence rate instead of 

the similar incidence rate to be more realistic when the total population size is quite 
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large. The disease related death rate is also incorporated in this model. Then our 

model has the following form. 

            / 1 /dS t dt p A S t N t I t S t        

             / ( / )dI t dt PA S t N t I t I t I t I t                                     1   

     /dR t dt I t R t      

where 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) is the  density of susceptible, infective and recovered 

population at time 𝑡 respectively 𝑁(𝑡) is the  density of total population size at time 𝑡 

where 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), P is the  fraction of infective 0 < 𝑃 < 1. A is a 

constant flow of new members into the whole population per unit time which can be 

susceptible or infective, 𝜆 is the adequate contact rate   𝜎 is the  natural death rate,    

is the recovery rate, 𝛼 is the disease  related death rate and all parameters are positive. 

From system(1) since 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), we get the equation for the total 

population size 𝑁(𝑡) = 𝐴 − 𝛼 𝐼(𝑡) − 𝜎𝑁(𝑡). If the numbers of the new members 

entering the system per unit time is equal to the number of the population dying both 

from the disease and natural causes per unit time, then 𝑁(𝑡) = 0, this implies that the 

total population size 𝑁(𝑡) is a constant. 

Here we study and investigate the equilibrium solutions and stability behavior of 

system (1).  

 

Main Result 

Here we study an SIR epidemic model to obtain properties of the equilibrium points 

and analyze sufficient conditions under which the equilibrium points are locally stable 

or globally stable. 

We rewrite the system (1) into the form  

𝑆̇ = (1 − 𝑃)𝐴 −
𝜆

𝑁
 𝑆𝐼 − 𝜎𝑆 

𝐼̇ − 𝑃𝐴 +
𝜆

𝑁
 𝑆𝐼 − (𝛾 + 𝜎 ∝)𝐼                                                                              → (2) 

𝑅̇ = 𝛾𝐼 − 𝜎𝑅   

and from biological consideration we focus our attention on the closed set 

    3
, , ;0 /S I R S I R N AR 


         
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So, that the solution of the system can be realistically interpreted for clear 

understanding of the SIR epidemic model.  

First we study the steady states of the system (2), These x steady states   (𝑆∗, 𝐼∗, 𝑅∗) 

are determined analytically by setting 𝑆 = 𝐼 = 𝑅 = 0.  Then we obtain  

𝑆∗ =
𝛼(𝐼−𝑃)𝐴

𝜆

𝑁∗(𝐴−𝜎𝑁∗)+𝛼𝜎
                                                                                                    → (3)  

𝐼∗ =
1

∝
(𝐴 − 𝜎𝑁∗)                                                                                                       → (4)   

   **
/ A NR                                                                                  →(5)  

 𝑆𝑖𝑛𝑐𝑒 𝑁∗ =  𝑆∗+𝐼∗ + 𝑅∗, by substituting  𝑆∗, 𝐼∗ and 𝑅∗ we obtain 

* * * *0 (1/ ) ( / )( ) ( / ) ( ) ( )N A N N A N PA                      (6)   

 

Letting  

( ) ( / )( ) ( / )( ) ( )F N N A N N A N                   

We have 

* *0 ( ( ) / )( )F N A N PA                                                                       (7)   

If (7) has a solution where  * (0, / ]N A   then 𝑆∗, 𝐼∗, and 𝑅∗ also can be  calculated. 

The system (2) will have a solution; it means the equilibrium point will exist. 

Stability of the disease – free equilibrium point.  

Proposition 

The  system (2) has a disease free equilibrium point if and only if 𝑃 = 𝑂 and 𝑁 =
𝐴

𝜎
 . 

 

Theorem 

Let 0 ( / ( ))R        ,if 0 1R    

Then the disease – free equilibrium point 𝐸𝑂 whenever it exists, is locally 

asymptotically stable and  𝐸𝑂 is unstable of 𝑅𝑂 > 1. 

Proof: 

The characteristic equation of (2) where  𝑃 = 0 at  𝐸𝑂 is  

(𝜆∗ + 𝜎)[𝜆∗ − 𝜆 + (𝛾 + 𝜎 + 𝛼)](𝜆∗ + 𝜎) = 0.  
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Thus the  disease – free equilibrium point 𝐸𝑂 is locally asymptotically stable  

if 𝑅𝑂 < 1 and unstable if 𝑅𝑂 > 1.  

Theorem 

If 𝑅𝑂 ≤ 1,  then the disease – free equilibrium point 𝐸𝑂 is globally asymptotically 

stable, wherever it exists.  

Proof 

Constructing a suitable  Lyapuno∨ function  𝑉1(𝑆, 𝐼, 𝑅) = 𝐼, we then have 
𝑑𝑣1

𝑑𝑡
= 𝑉1̇ =

𝐼,̇ 𝑖𝑓 𝑅𝑂 < 1, we have 𝑉1̇ ≤ 0. It is easy to see that 𝑉1̇ ≤ 0  if and only if 𝐼 = 0. Then 

the largest compact variant set of (2) where 𝑃 = 0 in the set {(𝑆, 𝐼, 𝑅 ∈ Ґ, 𝑉1̇ ≤ 0}.   is 

the singleton set {𝐸0 } . Therefore the Lassalle’s Invariance principle implies  that the  

endemic equilibrium points It is easy to see that 𝐸0 is globally asymptotically stable. 

If 𝑅0 = 1, we have 𝑉1̇ ≤ 0 It is easy to see that  𝑉1̇ = 0 if and only if 𝑆 = 𝑁 𝑜𝑟 𝐼 = 𝑂. 

Then, the largest compact invariant set of (2) where 𝑃 = 0 is the set {(𝑆, 𝐼, 𝑅} ∈

𝛤, 𝑉1 ≤ 0} is the  singleton set {𝐸0 }.  Therefore Lassalle’s invariance principle implies 

that the  endemic equilibrium point 𝐸0  is globally asymptotically  stable. 

 

Theorem 

If 𝑃 = 0, 𝑅0 > 1 and 𝑁1 ∈ (0,
𝐴

𝜎
) 𝑡ℎ𝑒𝑛 endemic equilibrium point 𝐸1 is locally 

asymptotically stable. 

Proof 

From system (2), replace S by 𝑁 − 𝐼 − 𝑅. This leads to  

𝐼̇ = 𝑃𝐴 +
𝜆

𝑁
(𝑁 − 𝐼 − 𝑅)𝐼 − (𝛾 + 𝜎 + 𝛼)𝐼  

𝑅̇ = 𝛾𝐼 − 𝜎𝑅                                                                                                          → (8)  

𝑁̇ = 𝐴 − 𝛼𝐼 − 𝜎𝑁  

At the endemic equilibrium points 𝐸1 we then obtain the characteristic equation  

(𝜆∗ + 𝜎)(𝜆∗2 + 𝑎1𝜆∗ + 𝑎2) = 0.   

Where  

1 1 1 1 1 1 1 1

2

2 1 1 1 1 1 1 1 1 1 1 1 1 1

( / )( 2 ) ( , , )

[ ( / )( 2 )] ( / ) ( ) ( / ) ( , , )

a N N I R f N I R

a N N I R N I I R N I g N I R

    

        

       

         
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It is easy to see that a1>0 and a2>0 if 1 1 1 1( / )( 2 ) 0N N I R             (9)  

 substitute I1 and R1 we obtain 

1 1 1 1( ) (2 / )( ) ( / ( ))( ) 0N A N N A N                                  (10)  

Then from 10 and 1( ) 0F N    we obtain  

1 1( / )( ) 0N A N                                                                                         (11)   

since all parameters are positive and N1    (0,A/σ), equation  (11) is always true. This 

implies that a1>0 and a2>0. Thus according to the Routh – Hurwitz criterion if p=0, 

R0>1 and N1   (0,A/σ) then the endemic equilibrium point E1 is locally 

asymptotically stable. 

 

Conclusion 

We Proved that the  disease free point E0 exists when N= 
Α

𝜎
  and P  = O, which means 

that the new members of population are susceptible only. We showed by using  an 

appropriate Lyapunov function that of Ro  ≤ 1, the disease free equilibrium point Eo 

is globally asymptotically stable, So that the disease always dies out If Ro >1  or o<

𝑝 ≤ 1, Which means that the new members of population include both susceptible 

Population and infective  Population, the disease free equilibrium point Eo becomes 

unstable while the endemic equilibrium point emerges as the unique equilibrium point 

and becomes and  asymptotically stable. 
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