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Abstract 

 

In this paper, a new method using radial basis function (RBF) networks is 

presented. Integral equations are solved by converting them into an 

unconstrained optimization problem. The obtained solutions are approximated 

by Radial Basis Function (RBF) Networks. Then a cost function is achieved in 

terms of network parameters which need to be minimized. Now it is time to 

employ the Broyden Fletcher Goldfarb Shanno (BFGS) optimization method 

in order to minimize the established objective function. It has to be pointed out 

that once this function is differentiable, its convergence speed will be high 

over other existing methods in the literature. Results show that our method has 

the potentiality to behave such an efficient approach for solving integral 

equations as well as integral equations of the second kind. The main advantage 

of applying RBF networks is that it makes it effortless to calculate the gradient 

of the cost function. Some examples are presented to confirm our results. 

 

Keywords: Integral differential equation, artificial neural network, 

unconstrained optimization, RBF network, BFGS method. 

 

 

1. INTRODUCTION 

Numerical Solution of integral equations plays major role in applications of sciences 

and engineering. It arises in wide variety of science applications for e.g. physics, 

mechanics, telecommunications, petrochemical and nuclear power plants, etc [12]. 

Once ordinary differential equations, integral equations and partial equations fails at 

giving us explicit solutions, so the numerical method will be applicable in solving 

them and one can see that compare to ordinary differential equations, the integral 

equations will be approximated more desirable. By transforming a differential 

equation into an integral equation using Leibniz integral rule, a differential integral 

equation is achieved. In this case the integral- differential equation can be considered 

as an intermediate step in determining Volterra integral equations which are 
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equivalent to the given differential equation [13]. Different types of numerical 

methods are also available for solving integral equations [20, 21]. For example, 

Biazar et al; [4], applied successfully Homotopy Perturbation Method to solve 

Fredholm nonlinear integral equation. Babolian et al; [5], have solved nonlinear 

Fredholm integral equations of the second kind using Haar wavelet method. E. 

Babolian, K. Maleknejad et al; [14], have employed two-dimensional triangular 

functions and their applications as basic functions to solve the nonlinear 2D Volterra–

Fredholm integral equations. K. Maleknejad et al; [15], have proposed a method for 

solving two-dimensional Volterra–Hammerstein integral equations. Utilizing two-

dimensional functions, it will be possible to transform the considered integral 

equations into nonlinear integral equation and the solution to this none linear system 

will be approximated. M. Alipour et al; [16], have considered Bernstein polynomials 

for solving Abel’s integral equation. Recently many applications of artificial neural 

networks have been reported in the literature, and applications in science and 

engineering are growing. Moreover, artificial neural networks have been so particular 

in an active field of research that has matured greatly in solving integral equations. 

For example, Shekari et al; [7], have solved partial differential equations using neural 

networks and optimization techniques. A. Golbabai et al; [8], have solved a system of 

nonlinear integral equations by RBF networks. It has been pointed out that the neural 

network architecture owns the attractive feature of being universal approximator 

which is applicable in solving integral equations. For example, Jafarian et al; [23], 

have solved the fuzzy Abel integral equations using back propagation multi-layer 

networks. Huang et al; [25], have approximated a function with damped wave using 

self-constructing RBF network, in which at the start, RBF network consists of a few 

sets of centers, then given the training, the number of centers will be fluctuating until 

it meets the successful training then the number of centers remains constant. Huang et 

al; [26], generalized the previous algorithm, and named it a generalized growing and 
pruning (GGAP) algorithm. For more details on the RBF neural networks see [24]. 

Asady et al; [17], have solved the two-dimensional Fredholm integral equation of the 

second kind using multi-layer artificial neural networks and an optimization method. 

In this paper the optimization method of steepest descent, also called the gradient 

descent method is applied [17]. Sharma et al; [6], have employed an efficient fifth 

order method for solving systems of nonlinear equations. By the time that the integral 

equation converts to dynamic system, this algorithm becomes more applicable. In this 

article, the integral equation or system of integral equations is written as the sum of 

squared errors (SSE). In this error function (cost), the solution to the integral equation 

is approximated by a RBF network. The RBF network parameters will be chosen to 

minimize the cost function. To minimize the cost function, an unconstrained 

optimization method should be used. To unconstrained optimization, quasi-Newton 

optimization method (BFGS) is implemented. It is a new feasible point, if the cost 

function is differentiable, we get good resultant of BFGS method in minimizing and it 

is going perform faster than other existing optimization methods [9]. In following 

there are some significant characteristics in transforming integral equation into an 

unconstrained optimization problem and then solve it by BFGS optimization method.  
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I. RBF neural network has been implemented as a universal approximator for 

different types, especially Fredholm equations of the second kind.  

II. Application of this method is ordinary.  

III. Comparing to other iterative methods, its convergence rate is high as in most 

cases it devotes less than 5 minutes to perform the process. While having 

gradient descent, it may reach up to 30 minutes. This method reduces 

processing and increases speed. 

 

 

2. BFGS OPTIMIZATION METHOD 

To actually solve many technical processes, optimization methods are needed. Hence 

optimization methods explore assumptions to varying parameters and suggest the best 

way to change them. Optimization methods generally categorized to: constrained and 

unconstrained. Since transforming constrained method into unconstrained method is 

feasible, unconstrained optimization techniques are vitally important [10]. Here we 

discuss methods for unconstrained optimization, including Nelder Mead method, 

Newton method and quasi-Newton methods [18]. Obviously, BFGS method is one of 

the most effective methods for unconstrained optimization [10, 9].this is one of the 

quasi-Newton methods which uses approximations instead of Hessian inverse matrix 

methods If we have the following minimization problem of the form  

 

f( ), nMin x X R                 (1) 

 

Given, 
*( )f x  is the minimal, the iterative process for finding *x   is:    

 

  1 ,T
k k k k kX X S f x                                      (2) 

 

Where kS is a symmetric matrix n n , and k   is learning rate which will be found to 

minimize 1( )kf x  . For kS is Hessian matrix of, Newton's method will be found, and if 

kS I then we have gradient descent. In general, choosing kS as one of the 

approximation of Hessian matrix, quasi-Newton methods can be established. 

Suppose f on nR  contains the continuous second order partial derivatives, define 

 

  1,T
k k k k kg f x p X X                   (3) 

 

And kH is Hessian matrix approximation in iteration k. Hence approximation of the 

matrix H is applied by David-Fletcher-Powell.  

Starting from each of the positive constant symmetric matrix 0H  (i.e I), each point 

0x and 0k  take the following phases: 
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Phase 1. Consider 

 k k kd H g   

 

Phase 2 .Minimize  ( )k kf x d  subject to 0   . 

 Now we have 1kX  , k k kP d and 1kg  obtained. 

 

Phase 3. Consider 

 1k k kq g g   

And 

 1

T T
k k k k k k

k k T T
k k k k k

p p H q q HH H
p q q H q           (4) 

 

Then, Update k and return to step 1. 

 

It is proven that if kH  is real-valued constant, then 1kH  will be real-valued constant 

and the sequence of this algorithm is convergence [10]. A new method of updating for 

H is, Broyden- Fletcher- Goldfarb-Shanno [10]: 

 

 
1 1

T T T T
k k k k k k k k k k k

k k T T T
k k k k k k

q H q p p p q H H q pH H
q p p q q p

  
    

 
         (5) 

 

Provided that in the above algorithm, state (5) is used instead of (4), the method will 

be plausible as BFGS method. 

 

Remark. It is proven that for each 0k  which led to 0T
k kp q  , also matrix 1kH   

remains constant positive [Lu]. So at phase 2, we will start with small value of k and 

then deploy it to the point that we get 0T
k kp q  . 

Respect to this, an optimization problem no longer need to be solved in the second 

phase. 

 

Example a. BFGS algorithm will be employed in solving the following minimizing 

problem 

     2 45 25 8 f ,Min x xy y x y Min x y              (6)

   

After the gradient vector is computed, starting from the initial point  0 20, 5X   , 

BFGS algorithm will get running until the obtained absolute error from the four 

previous errors (approximations) is small enough in other words: 
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9

4
13

1.2663 10

3.4461 10
k kX X






 
  
  

  

 

After the optimal point iterations are done,  * 20,3x  will appear with the optimal 

value of -343. Integration of x and y during the BFGS algorithm can be seen  

in figure 1. 

 

 
 

Fig. 1. Integration of example a 

 

To verify the resulting solution, the graph of function ( , )f x y on    18,23 2,4 is 

displayed in Figure 2. 

 

 
 

Fig. 2. The exact graph of function ( , )f x y in example a 
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We see that running time is limited. In fact, when f is differentiable, this method is 

superior to other methods. 

 

 

3. ARTIFICIAL NEURAL NETWORK RBF 

Artificial neural networks ANN have many uses in a variety of architecture to detect 

function approximation. ANNs have given considerable attention in multi-layer 

networks, radial basis function (RBF) networks and recursive networks. Radial basis 

function (RBF) networks typically have three layers: an input layer, a hidden layer 

and a output layer. The general form of a RBF network is plotted in Figure.3. 

 

 
 

Fig.3. Structure of RBF 

 

 

This RBF network involves an equation which is illustrated in Fig. 3  

  

 
1

( ) ,
n

i i i
i

y f x w x c


         (7)

   

Where ic  and iw represent centers and weights to output layers, respectively. 

Function i  is a nonlinear function and ix c possess the highest value. By increasing 

value of ix c , the value of this function will be reduced to zero. Thus, this is called 

the radial basis functions. Here many states can be adopted, but the following is 

widely used  

 

 

2
1

( ) exp ,
2

x cx


  
      

                (8)
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This function is called Gaussian function and σ is the variance. 

And  

   2 2 2( ) ,i ix x c


                  (9) 

 

Subject to 0   

 

And α is not an even number. Function  in (9), is called multiquadric. Width i can 

be defined as mean absolute distance of origin point. And  

 

 
1

, 2, ,
1

k

k i
i

c k m
k





 

                                         (10) 

 

Where ic i-th center and β is a real constant which is closed to one. The interesting 

feature of multilayer neural networks and RBF network is that they are known as 

universal approximator. The following theorem justifies that the RBF networks are 

universal approximator 

 

Theorem 1: Assume Ω is the set of all functions which are calculated by a Gaussian 

network on a compact set of S includes nR .  

 

2

1 1

1
( ) exp : , , ,

2

N n
k ik

N i i ik ik
i k ik

x cf x w w c X S
 

    
             

   

And 

 
1

N
N





    

 

Now, Ω is dense in  C S .  

 

Proof. Refer to [11] 

 

Having this theorem, it is proved that and by altering the function (0) , Each of 

Gaussian RBF networks are universal approximator. (RBF) network has also been 

used successfully in a variety of applications, and which has a number of advantages. 

Selecting the numbers, spotting the centers and initial widths and how to update RBF 

network become very crucial to understand these networks. If learning is supervised 

in Gaussian networks, all optimized parameters will be achieved by using back 

propagation (BP) method. By considering the function  in (9), then intervals i are 

provided from the equation (10), consequently, centers will be determined using 

testing error as well as employing K – means clustering algorithm (K-M). 

The algorithm then randomly chooses k points in vector space, these point serve as 

the initial centers while the same distance measure is chosen [19]. 
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For example, a Gaussian RBF network such as (1-2-33) by 400 testing samples in 

   1,1 1,1    is able to interpolate: 

 

   2( , ) sin .f x y x xy                  (11) 

 

If the BP algorithm is implemented to learn and the initial variance of i-th is exhibited 

in i
p
i

  , after the 80.0 cycles (Epoch) we achieve to 0.0709SSE  . Figure 4 

displays the exact and approximate solution. 

 

 

 
 

Fig.4. the exact solution and network response to approximate 

 2( , ) sinf x y x xy   

 

 

It should be noted that a Growing and Pruning Method for Radial Basis Function 

Networks is defined in [1] in which by running the method after the learning is done, 

the optimal number of centers and variance are obtained. In other words, during 

learning process the centers are removed or added to the point that learning will be 

done using the least centers. 

 

RBF network is a type of artificial neural network for application to problems of 

supervised learning. Radial basis function (RBF) networks typically have three layers 

with clear structure. In a hidden layer, each of neurons implements a radial basis 

function. RBF network is superior to multi-layer networks in derivation which is 

easier. Especially when the function (0)  in RBF network places in the equation (9). 

In this case, widths i  are chosen by (10), and centers are selected using testing error. 

As a result, in learning process weights need to be determined. The RBF widths are 

usually all fixed to same value which is proportional to the maximum distance 
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between the chosen centers. Their excellent approximation capabilities have been one 

of the advantages.   

 

 

4. INTEGRAL EQUATIONS AND ITS RELATIONSHIP WITH NEURAL 

NETWORKS 

In this section, converting integral equations and integral equations systems to an 

optimization problem has explained. Since in this method being linear and nonlinear 

integral equation seems to be not an issue, it is stated as 

 

        ( ) ( ) ( , ) ( ) , , ,f t F u t k t s G u s ds a b or a x


                  (12) 

 

In general the equation (*), is diagnosed as a Volterra or Fredholm linear or nonlinear 

integral equation, and it is assumed that equation (*) is second kind. In the other 

words: 

   ( ) 0F u t    

We define: 

 

       ( ) ( ) ( , ) ( ) .u t F u t k t s G u s ds


    

 

Therefore, equation (*) is written as follows: 

   1( ) ( ) 0,f t u t t     

 

In which 1  is a set which is meant to find the solution to ( )u t , subject to 1t  . 

Consider the following cost function: 

 

    
21

( , ) ( ) ( ) ;
2 t B

E f f t u t 


          (13) 

 

Where B is a subset of 1  , defined as the training data set. It is quite clear that for 

such a function ˆ( )u t , the value of E on 1  is reached to the least possible value, then 

ˆ( )u t  is identified as a solution to the equation (*). Here, unknown function ˆ( )u t  is 

approximated by a RBF network. As a result, ˆ( )u t is considered RBF network, output 

layer weights are unknown and E in (12) based on the weight of the output layer is a 

function of multi-variables. We have explicitly included that weights are unknown. 

Ultimately, the purpose is to find RBF weights so that the value of E in (13) is about 

to minimized. To minimize E, the unconstrained Broyden Fletcher Goldfarb Shanno 

(BFGS) optimization method will be used. 
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Remark 1. In finding cost function E, it is necessary to approximate certain integrals 

by a numerical method. Of all proposed algorithm in this paper, Simpson and 

Romberg numerical methods are less accurate and derivation of E is recognized 

problematic. 

Most examples are implemented 10 - points Gauss-Legendre numerical method to 

approximate integrals. In this way, the interval  0,1  of approximation 

 

1

0
1

( ) ( )
n

i i
i

f t dt w f t


 , 

Where the parameters it and iw are shown in table 1: 

 

Table 1. Nods and weights of the Gauss-Legendre quadrature formula for n=10. 

 

i ti wi 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.0130467357414141399610179 

0.0674683166555077446339516 

0.1602952158504877968828363 

0.2833023029353764046003670 

0.4255628305091843945575870 

0.5744371694908156054424130 

0.7166976970646235953996330 

0.8397047841495122031171637 

0.9325316833444922553660483 

0.9869532642585858600389820 

0.03333567215434406879678440 

0.07472567557529029657288817 

0.10954318125799102199776746 

0.13463335965499817754561346 

0.14776211235737643508694649 

0.14776211235737643508694649 

0.13463335965499817754561346 

0.10954318125799102199776746 

0.07472567557529029657288817 

0.03333567215434406879678440 

 

Transferring forms can be used for the other intervals. The main feature of n-point 

Gauss integration is that if we aim to derive the neural network of its inputs or 

weights, numerical method will still work. But derivation process using Romberg 

method will be not pretty straightforward. 

 

Remark 2. Integral equations can also be converted to an optimization problem. In 

this case, because there are many variables and coefficients, calculation rate will be 

slightly lower. 

 

For more details of non-linear integral equations, consider 

 ( ) ( , , ( ) ( ),
x

f x k x t f t dt g x 0                  (14) 
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Where  

 

 

 

       

( ) ( ), ( ), , ( ) ,

( ) ( ), ( ), , ( ) ,

, , , ,, , ( ) , , ( ) , , ( ) , , ( )

T
n

T
n

T
n

f x f x f x f x

g x g x g x g x

k k k kx t f t x t f t x t f t x t f t





   

1 2

1 2

1 2

 

 

To solve the equation (1), unknown function f, is approximated by a RBF network 

which is called ( , )NNrbf c r , in other words 

 

  ( ) , ,f x NNrbf x c r                  (15) 

 

In which c and r represent centers and Gaussian functions distances, respectively. X is 

RBF input and ( )f x is RBF output. After approximation of (2), and replace it in (1), it 

must be provided a function of energy (costs) to be minimized. Note that ( )f x  is a 

vector. 

 

Creating energy function, the interval  ,a b is recommended to solve equation (1). 

Then some points such as ix from  ,a b  is selected which are called data training set. 

For each ix , the error is calculated as follows: 

     , , , , , , ( )
ix

i i i i iNNrbf x c r k x t NNrbf x c r dt g x   0                         (16) 

 

Note that equation (3) is a vector. To complete the energy function, for different i , 
least squares of vector i is considered. Thus, the energy function is stated as follows: 

    2

1

,
d

i
i

E NN 


                              (17) 

Where d is the number of training data, 2

i  is square of component i and 0 goes as 

  
1

.
k

i
i

xx


                                              (18) 

Subject to   1, ,
t

kx x x                              

 

Finally, the unconstrained optimization problem is provided.  

 

  
,

,
c r

E Min E NN                                                                                                                                                     

Where ( )E NN is multi-variable function with the unknown’s c and r which need to be 

defined that the resulting value will be the lowest. The process of obtaining c and r is 

the learning network. In computer program, you should note that the index 

components of the unknown vector function ( )f x are not pressed wrong because it 

lead us to a wrong solution. 
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5. NUMERICAL RESULTS AND EXAMPLES  

In this section, some examples on effectiveness of proposed algorithm for solving 

integral equations are investigated. In each example, properties and optimal 

parameters before and after the learning network will be mentioned. This method is 

used for a variety of integral equations but Fredholm equations of the first kind. 

 

Example 1. Fredholm integral equation of the second kind is given: 

2

0

1
( ) sin( ) sin( )cos( ) ( )

2
u x x x t u t dt



    

 

The exact solution is ( ) sinu x x . After the desired learning network is created, 

properties of network will be detected. RBF network centers are 

 0.05,0.1,0.2,0.3,0.4,0.5,0.55,0.6,0.7,0.75,0.8,0.85,0.9,1,1.1,1.15,1.2,1.3,1.4,1.45,1.5 ;c 
 

The interval 0,
2

 
 
 

 divided into 10 equal parts and the obtained points are training 

data. In each of iteration, Simpson numerical method with 8 points is employed to 

approximate integrals. After learning network, the least square error is obtained. 

 

 288.937129 10E    

 

The level of error in the specified points of interval 0,
2

 
 
 

 can be seen in table 2.  

After converting (15) to an unconstrained optimization problem and solving the 

problem by using Nelder-Mead, results to ( )u x  will be obtained (table 2).  

 

Table 2. The error of numerical results on interval 0,
2

 
 
 

 

x ( ) ( )approxu x u x  

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2 × 10-15 

2.08081 × 10-3 

6.91915 × 10-4 

7.64088 × 10-4 

3.63504 × 10-4 

5.21493 × 10-5 

2.31284 × 10-4 

8.44103 × 10-5 

4.19243 × 10-5 

1.25060 × 10-4 
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1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.37210 × 10-4 

9.90674 × 10-5 

1.15926 × 10-4 

1.65118 × 10-4 

1.30257 × 10-4 

3.26301 × 10-5 

 

Example 2. Consider the following Fredholm integral equation of the  

second kind [8]: 

 

  

5 1
2 21

3 3

0

1
( ) ( ) 0 1

3

tx x
f x e f t dt e x

 

     

 

 

The exact solution to this equation is 2( ) x
ef x e RBF network centers include: 





0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,

       0.71,0.77,0.8,0.85,0.9,0.95,0.98

c 
 

 

Numerical method to approximate integrals is 10 point Gauss-Legendre method and 

some of the parameters are: 

  
8

3 ,
7

    

 

Using  0,1,10x linspace , and dividing the interval  0,1  into 10 parts, training 

data will be provided. After training is done, sum of squares of errors (SSE) is  
25-10 7.1005991 × 

The errors in some points of interval  0,1 are presented in table 3: 

 

 

Table 3. The level of errors in some points of interval  0,1  

 

x error  [G]error  

0.0 

0.1 

0.2 

0.3 

0.4 

1.33458 × 10-5 

3.38696 × 10-4 

2.27475 × 10-4 

3.05104 × 10-5 

2.36931 × 10-5 

5.40631× 10-7 

4.17207× 10-7 

1.62255× 10-7 

9.97279× 10-8 

5.33277× 10-7 
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0.5 

0.6 

0.7 

0.8 

0.9 

1 

6.02424 × 10-5 

1.54610 × 10-5 

8.62065 × 10-5 

2.77102 × 10-5 

1.29511 × 10-4 

9.86130 × 10-5 

5.12821× 10-7 

8.86581× 10-8 

3.82386× 10-7 

6.76977× 10-7 

3.36868× 10-7 

5.00635× 10-7 

 

The Exact solution 
2( ) xf x e  and network output for the points of above table can 

be seen in Figure.5.  

 

 
 

Fig.5. the exact solution of network in example 2 

 

Note that the amount of energy function is achieved by BFGS which is an appropriate 

amount of
257.1005991 10 . According to look up table, the error of proposed method 

in this paper is 0.01 more than errors of [G]. It is due to using different integration 

methods. In following example, RBF-BFGS method shows better performance.  

 

 

Example 3. Consider the following nonlinear Fredholm integral equation [4]: 

   
1 3

0

1
( ) sin( ) cos( )sin( ) ( ) 0 1

5
u x x x t u t dt x       
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The exact solution is
20 391

( ) sin( ) cos( )
3

u x x x 


  . Network centers are 

selected as previous example. And most of the parameters are constant. 10-point 

Gauss integration method is implemented. 

 

After training is done, sum of squares of errors (SSE) is 9.92589 × 10-24.  

 

The integral equation in [4] is solved by Homotopy Perturbation method. The errors 

are shown in table 4. 

 

Table 4. Comparing the error of proposed method and Homotopy Perturbation 

method 

 

x 
homexact otopyu u   [2] error 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.189762 × 10-6 

1.131531 × 10-6 

9.625379 × 10-7 

6.993244 × 10-7 

3.676567 × 10-7 

0 

3.676567 × 10-7 

6.993247 × 10-7 

9.625379 × 10-7 

1.131531 × 10-6 

1.189762 × 10-6 

5.68723 × 10-8 

4.59182 × 10-5 

1.13281 × 10-4 

1.52473 × 10-4 

1.35471 × 10-4 

1.07678 × 10-4 

8.76315 × 10-5 

7.85306 × 10-5 

8.01164 × 10-5 

8.90415 × 10-5 

5.68700 × 10-8 

 

The obtained exact and approximate values of the neural network, in 20-point of the 

interval  0,1  are plotted in Figure 5. It can be observed that the proposed method is 

more accurate at the end of interval  0,1 . According to the obtained results of 

proposed method, the amount of energy function is decreased enough to   9.92589 × 

10-24. After the training and running algorithm BFGS is completed, now it is time to 

apply trained RBF network to approximate ( )f x . Results can be studied in Table 4. 

It can be seen on some points, the proposed method of these article superiors to 

Homotopy Perturbation method. The number of errors is almost the same. Also at 

either end of the interval  0,1  it shows the best performance compare to inside points 
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of interval  0,1  . In this example RBF network provided a good approximation of the 

solution to ( )u x as seen in Figure 6.   

Efficiency of RBF network and optimization method can be comparable to relative 

existing numerical methods. 

 

 
 

Fig.6. the exact and approximate solution of network in example 3 

 

 

 

Example 4. Consider the following linear Fredholm integral equations [2]: 

 

  

 

 

1

1 1 2
0

1
2

2 1 2
0

17
( ) ,( ) ( )

18 36 3

19
( ) 1 .( ) ( )

12

t s tu t dsu s u s

u t t t st dsu s u s


   


     






 

 

The exact solutions include: 1( ) 1u t t   and 2

2( ) 1u t t   . In this example, we 

assume two RBF network to approximate 1u and 2u . Centers are fixed and for both 

networks are as follows: 

 

   0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.75,0.8,0.9,0.98C   

 

The two sub-programs are aided to approximate two definite integral in given 

equations. After the training, the sum of squared error is 9.819509 × 10-15. This 
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example in [t] has been solved using analyzing method. The values obtained from 

proposed method in this article and analyzing method are displayed in table 5. 

 

Table 5. Comparing the error of proposed method and error of analyzing method 

 

t [2]in 1uerror of [2]in  2uerror of  in  1uerror of 

proposed 

method  

in  2uerror of 

proposed 

method  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.15 × 10-2 

1.33 × 10-2 

1.52 × 10-2 

1.71 × 10-2 

1.89 × 10-2 

2.08 × 10-2 

2.26 × 10-2 

2.45 × 10-2 

2.64 × 10-2 

2.82 × 10-2 

3.02 × 10-1 

0 

3.45 × 10-3 

6.90 × 10-3 

1.03 × 10-2 

1.38 × 10-2 

1.72 × 10-2 

2.07 × 10-2 

2.41 × 10-2 

2.76 × 10-2 

3.10 × 10-2 

3.45 × 10-2 

2.0273 × 10-5 

3.5992 × 10-4 

2.5798 × 10-4 

2.1999 × 10-4 

5.2762 × 10-5 

1.0913 × 10-4 

2.8376 × 10-5 

8.8216 × 10-5 

5.8917 × 10-5 

9.2409 × 10-5 

8.7507 × 10-5 

5.8222 × 10-9 

3.0438 × 10-4 

2.4737 × 10-4 

1.7840 × 10-4 

6.5656 × 10-5 

8.1042 × 10-5 

5.8746 × 10-6 

6.3392 × 10-5 

3.2255 × 10-5 

6.8801 × 10-5 

6.0757 × 10-5 

 

 

This example in [2] is solved by analyzing method. The system is converted to energy 

function and operating two RBF network for unknown function 1( )u x and 2 ( )u x . Table 

5 contains results of approximation of the proposed method and [2]. 

 

By studying table 5, using training network and having
169.819509 10E   , 

determining 1u  and 2u  will be much better than using analyzing method. Also, the 

proposed method estimates 2u  a little better than 1u .  

 

As seen in this example and the following examples, RBF networks are capable of 

solving integral equations systems and normal equations with high accuracy.  

Diagrams of function 1u , 2u  and their exact solutions are illustrated in Figure7 and 8 

Frequently.   
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Fig.7. Diagrams of approximate and exact solutions of function 1u (x) 

 

 

 
Fig.8. Diagrams of approximate and exact solutions of function 2u  (x) 

 

 

Example 5. Consider the following nonlinear Fredholm integral equations: 

   
1 32 1

0
( ) 1( )

x y xu x e dy e a xu y      

 

Where ( ) xu x e is the exact solution. Babylonian et al in [5] have solved this 

equation using Haar wavelet method. The computing errors, on some points of the 

interval  0,1 are categorized as follows: 
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Table 6. Comparing errors of using Haar wavelet method [5] and RBF-BFGS in 

example 5 

 

RBF - BFGS exact Haar waveletu u   [k1]  x 

2.784 × 10-4 

2.066 × 10-4 

4.654 × 10-5 

2.927 × 10-4 

1.818 × 10-3 

2.370 × 10-4 

4.860 × 10-4 

8.820 × 10-3 

7.294 × 10-3 

0.002046 

0.003299 

0.008693 

0.016906 

0.018681 

0.011742 

0.002927 

0.008084 

0.021624 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

 

After converting the given problem to an unconstrained optimization problem, we get 

errors in the above table while instead of ( )u x ,a network RBF is used. It is clear that 

he proposed method in each points of  0,1 owns the best performance over Haar 

wavelet method. All errors are calculated using the least running time. In the other 

words it is not time-consuming.  

Accuracy of RBF - BFGS method at the end of the table is much better. Ending to 

learning process is based on level of sum of squared error that is once the sum of 

squared error (SSE) is low so learning is not yet complete and error is high on  0,1 , 

while the amount of SSE is reduced enough, the RBF network successes in  

approximating ( )u x  with efficient accuracy. 

 

( )u x Graph and its approximation using RBF - BFGS compare to different SSE are 

displayed in Figure 9. 

 
Fig. 9. Exact and approximate solution using RBF - BFGS compare to different SSE 

Then, approximations to these figures are provided. In this example, RBF - BFGS 

method has determined great performances over Haar wavelet. 
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CONCLUSIONS AND RECOMMENDATIONS 

 In this study we provide an introduction to the Radial Basis Function Networks 

which have very attractive properties such as function approximation, interpolation 

and cluster modeling. These properties made them very useful in many applications. 

In this article, integral equations are solved by converting to an unconstrained 

optimization problem. And integral equation was estimated by RBF network. The 

optimization BFGS method is used to solve the obtained optimization problem. 

Considering some changes in the approach, the proposed method can experience the 

enhancement. For instance, the network architecture was changed, other existing 

optimization methods such as Nelder-Mead method were employed and high speed 

computers or parallel algorithms were applied because solving some of problems is 

time consuming. As a direct consequence, RBF's have been employed to calculate 

gradient energy function E in the BFGS method easily. But in networks with different 

architecture, for example, multi-layered network, calculation of network derivation is 

a little difficult while calculation of inputs and weighs is pretty straight forward. 

The high-speed convergence qualifies the optimization BFGS method over other 

existing method such as gradient decent method, no derivative techniques and other 

searching method. We got good resultant of our model in relative field. 
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