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Abstract: 

 

We discuss in detail about SIR epidemic model in large population. The main 

insight from such large population approximates is the threshold limit 

theorem. The theorem states that as  n → ∞ one of two possible scenarios can 

occur, only few individuals will become infected or else a more or less 

deterministic positive proportion of the susceptible  of smaller order, will have 

been infected by  the end of the epidemic. The latter scenario is referred to as 

a large or major outbreak. The important task is to find out for which 

parameter values the asymptotic Probability of a major outbreak is 0. The 

parameter Ro called the basic reproduction number plays a crucial role in this 

context. The parameter Ro a function of the model, is the average number of 

new infections caused by a typical infective during the early stages of the 

epidemic. We discuss in detail about the basic reproduction number Ro in this 

paper. 
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Introduction: 

The main advantage of deterministic models lies in their simpler analysis. For a 

stochastic epidemic model to be mathematically manageable it has to be quite simple. 
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Deterministic models can be more complex, yet still possible to analyze, at least when 

numerical solutions are adequate. 

Stochastic models are to be preferred when this analysis is possible since the 

most natural way to describe the spread of disease is stochastic. For example in a 

large community many models will lead either to a miner out break infecting more or 

less deterministic proportion of the community. To calculate the probability of the 

two events is only possible in a stochastic setting.  Further when considering 

extinction of endemic diseases this can only be analyzed with  stochastic models, 

since extinction occurs when the epidemic process deviates from the expected level.  

Knowledge about uncertainty in estimates requires a stochastic model. 

So we, prefer stochastic models when their analysis is possible otherwise 

deterministic models should be used. 

 

 

The Reed – Frost model: 

We shall consider simplest epidemic model for the spread of an infectious disease say 

the common cold in a small group of individuals. This model is called the Reed – 

Frost. The model is an SIR epidemic model which means that individuals are at first 

susceptible to the disease. If an individual becomes infected he/she will first be 

infectious and called an infective for some time and then recover and become immune 

a state called removed. 

The model  is usually specified using discrete time scenario it is natural to 

think of the infections period as being short and preceded by a longer latent period. 

Then new infections will occur in generations, these generations being separated by 

the latent period as the discrete time unit. The event probabilities in a given 

generation depend only on the state of the epidemic in the previous generation and 

these events are specified by certain binomial probabilities. If we let
jX    and 

jY    

denote the number of susceptible and infective respectively at time j, the chain – 

binomial Reed – Frost model has conditional probabilities. 
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and  
1 1j j jX X Y  . This means that a given susceptible of generation j remains 

susceptible in the next generation if she escapes infective from all infective of 

generations j; these events are independent each occurring with probability q. Further 

different susceptible in a given generation become infected independently of one 

another and infectious individuals are removed in the next generation. Given the 

initial state 0X n   and 0Y m   the probability of the complete chain

1 1,..... , 0k ky y y   is obtained by conditioning sequentially and using the Markov 

property of the chain. If we let 
1 1j j jx x y   we have 



Stochastic Epidemic in Large Communities 3 

 

1 1

1 1 1 0 0

1 1 0 0 1

0

1

,.... , 0 | ,

| , ...... 0 | ,

1 .... 1
0

k
k k

k k k

k k k k k

xy n y k y ym m

P Y y Y y Y X n Y m

P Y y X n Y m P Y X x Y y

xn
q q q q

y

 

From the mathematical  point  of  view , the Spread of the disease does not 

have to occur in generations. 

The necessary assumption is that each individuals who becomes infected has 

infectious contact with any other given individual with probability 1p q  , and all 

such contacts occur independently. We shall use the formula  
1

j

j

Z Y  to compute 

the total number of infected individuals. The quantity Z is also known as the final size 

of the epidemic. 

To compute 0 0| ,P Z z X n Y m   we sum the probabilities of all chains 

for which 
1

| y | j

j

y z  . From the defining equations it is seen that 0jY  implies 

that 
1 0jY  . Hence we know that the new infections may only occur whenever some 

individuals are infectious. So we include that the length of a chain cannot be longer  

than the total number infected, making the number of possible chains finite. The 

probability function for the final number of infected is given by 
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We calculate the probability function explicitly for Z in the following way. 

The final number infected among those initially susceptible when 0 1Y m   and

0 1,2X n   and 3. 

We start with n = 1 
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For n = 2, we have 
2
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For n =3, we compute only the first three probabilities the final probability 

may be derived from the complement 
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Stochastic Epidemic in Large Communities: 

Theorem: 

Consider a sequence of epidemic processes , ,
nn mE I  . Assume that nm m for all n   

and define   as the nontrivial solutions to1 e  . Also denote the final 

epidemic size by nZ   and write '

n nZ Z m . 

If 1 nthen Z Z  almost surely, where 1P Z and Z  is the total 

progeny in a continuous time branching process ,mE I   initialed by m   ancestors 

in which individuals give birth at the rate λ during a lifetime distributed according to 

I. 

If 1   then nZ  still averages to Z  , but now m mP Z q where q   is 

the extinction probability of the branching process. With probability 1 mq  , the 

sequence   ' /nn Z n   averages to a normally distributed random variable with 

mean  0 and variance. 
22 2 2( 1 ) / 1 1where  

From the theorem it follows in particular that in the case where 0 1R  ,  (

0R is given by ) the final size proportion /nZ n   converges in distribution to a 

random variable with mass
mq   at the point 0 and mass 1

mq   at the point  . The 

theorem states  that the distribution of the major outbreak sizes should be 

approximately Gaussian with mean n  = 583 and standard deviation     

   Suppose n = 1000 m = 1 we have the above result. 

The above theorem states that a major outbreak is large population is possible 

if and only if Ro > 1. Where Ro is called the basic reproduction number. 

 

 

Standard SIR epidemic Model: 

We consider a simple model for the spread of an infectious disease.   In particular, the 

population is assumed to be closed, homogeneous and homogeneously mixing. Also 

the effects of latent periods, change in behavior, time varying infectivity and 

temporary or partial immunity are not taken in to account. 

We assume that initially there are m infectious individuals and n susceptible 

individuals. The infections periods of different infective are independent and 

identically distributed according to some random variable I having an arbitrary but 

specified distributions. During her infections period an infective makes contact with a 

given individual at the time points of a time homogeneous Poisson process with 
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intensity λ/n. If a contacted individual is still susceptible, then she becomes infectious 

and is immediately able to infect other individuals. An individual is considered 

removed once her infectious period has terminated and is then immune to new 

infections, playing no further part in the epidemic spread. The epidemic ceases as 

soon as there are no more infectious individual present in the population. All Poisson 

processes are assumed to be independent of each other; they are also independent of 

the infectious periods. 

We call this model the standard SIR epidemic model, the letters S, I, R 

standing for the terms susceptible, infections and removed respectively. We denote 

the process by 
, ( , )n mE I  . Also denote the mean and the variance of the infections 

period I by   and 
2
 respectively the rate of containing a given individual is set to λ/n 

in order to keep the rate at which a given infective makes contact with other 

individuals constant (=λ) independent of the population size. The final size of the 

epidemic Z is simply defined as the number of initially susceptible individuals that 

ultimately became infected. Thus Z is a finite random variable taking values between 

o and n. We shall derive a triangular linear system of equations for

0 1, ,.....,n n n n n

n kP P P P where P   is the probability that k of the initial susceptible are 

ultimately infected. 

Let Z be the final size of the epidemic, and let 
0

( ) ( / ) ( )A A n Y u du  

be the total pressure of the epidemic. Both the final size and the total pressure 

can be expressed in terms of the infections periods and the individual thresholds. 

First 

1
1

min : /
i

ji
j m

Z i Q n I  

where Q(1), Q(2), …. Q(n) are the order statistics of Q1, Q2,….. Qn since the epidemic 

stops as soon as the infection pressure generated by the previously infected 

individuals is insufficient to infect any more susceptible. Also 

1

/
z

j

j m

A n I  

, which is just another way of writing A (∞) 

Hence it is clear that the final size and the total pressure are intimately related. 

 

Lemma 

Consider the standard SIR epidemic , ,n mE I   and let A be as above 

Then / / 1
z mAE e n  

,  ≥ 0 where  (o) = E [ exp (- I)] is the Laplace transform of I. 

 

Proof: 

To prove the identity, we note that 
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Where the last identity follows since the variable 
, 1i jI Z    are both 

independent of both Z and A. 

We are now in a position to derive the system of equations for 

0 ,....n n n

nP P P   For each k ≥ 1, define k to be the set { 1, 2,… k}; also let o be the 

empty set. The initial susceptible are labeled 1, 2,…n. n

kP  is the probability that k 

initial susceptible are infected in the , ,n mE I   epidemic and n

kP   is the probability 

at precisely the set k is infected. 

By symmetry 
n n

k k

n
P P

k
  Now fix k and choose l   such that 0≤ k ≤ l   ≤ n, 

Implying K L N  . We use the notation of infection pressure to compare 

an epidemic within N with a sub-epidemic within L. The event that an epidemic 

within N infects presently the set K is the same as the event that a sub-epidemic 

within L infects precisely K and that these k new infective, together with the m initial 

infective, fail to infect any of the individual s in the set N \L. We know from the 

sellke  construction   that the probability of avoiding the infection is given by exp (-a), 

given that the sub-epidemic has generated the infection pressure 
lA a  . It follows 

that  

exp | .n l l l l

K KP P E A n l Z k where Z is the final sizeof thesub epidemic

 

This equation is equivalent to 

/ exp | 1n l l l

k k

l n
P P E A n l z k

k k
 

Now let us use the wald’s identity applied to the sub-epidemic and with 

n l   to get 

/ / 1
l

l z mA n l
E e n l n  

or conditioning on the final size lz  

0

exp | / / 1 2
l k m

l l l

k

k

P E A n l z k n l n  

Equations (1) and (2) immediately give us 
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We arrive at the following result 

Consider the standard SIR epidemic , ,n mE I .Denote by n

kP   the probability 

that the final size of the epidemic is equal to k, 0 ≤ k ≤ n. Then we have 

0

/ / ,0 .
l k m

n

k

k

n k n
P n l n l n

l k l
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