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Abstract 
 

In this paper, a mathematical model is developed, taking into consideration 
the slip velocity at the wall of blood vessel of time-dependent Stenosis with 
unsteady flow through a tube in the presence of a Stenosis. Momentum 
integral method has been used to evaluate axial velocity and pressure gradient 
in time dependent Stenosis. Results have also been compared with and 
without the effect of slip velocity. It has been observed that axial velocity 
differ significantly with existence of slip velocity. The present study asserts 
that the slip velocity has a reducing effect on the pressure drop. 
 
Keywords : Unsteady Flow, Integral Momentum Method, slip velocity, 
stenosis.   

 
 
Introduction 
Fat and cholesterol deposits on the inner walls of arteries cause narrowing of the 
lumen diameter, resulting in a decrease in blood flow to the region upstream of the 
constriction. Depending on the artery affected, the reduction in flow may result in 
stroke, gangrene, angina, or even a heart attack. Certain hydro dynamical factors play 
a very important role in the development of this disease. Lee and Fung [1] employed 
numerical technique to solve a problem concerning blood flow through a stenosed 
tube. Haldar [2] had obtained analytical results for oscillatory flow of blood which 
behaves as a Newtonian fluid. 

McDonald [3] remarked that for vessels of radius greater than 0.25 mm., blood 
may be considered as a homogenous Newtonian fluid. At low shear rates blood 
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exhibits non-Newtonian behaviour [4], in larger arteries where the shear rate is 
considerably high, blood may be represented as a Newtonian fluid. Bennett [5] who 
carried out in vitro experiments to study that behaviour of red cells during blood flow, 
suggested that there might exist the possibility of red cells to have a slip velocity at 
the wall under certain conditions. Subsequently several other investigators e.g. Nubar 
[6], Brunn [7] and Mishra and Kar [8] also indicated the possibility of a slip-velocity 
at the inner surface of the vessel wall. Cavalcanti [13] discussed hemodynamics of an 
artery with mild Stenosis. Liu and Yamaguchii [14] studied waveform dependence of 
pulsatile flow in a stenosed channel Monika and Bortila [15] presented the simulation 
of incompressible non- Newtonian flow through channels with sudden expansion 
using the power law model. Sankar and Hemalatha [16] have studied a non-
Newtonian fluid flow model for blood flow through a catheterized artery-steady flow. 
Massoudi and Phuoc [17] considered pulsatlile flow of blood using a modified 
second-grade fluid model. Ismail et al. [18] discussed a power-law model of blood 
flow through a tapered overlapping stenosed artery. Chakraborti [19] found that the 
pulsatile blood flow through an inclined stenosed  tube with a velocity slip Riahi et al. 
[20] considered unsteady blood flow in an artery with an overlapping stenosis.  
Kumar and Diwakar [21] discussed A mathematical model for Newtonian blood flow 
in the presence of applied magnetic field. Recently, Ali et al. [22] have studied the 
mathematical modelling for the flow of blood cells in capillaries. Mohan et al. [23] 
considered the effect of magnetic field on blood flow (elastico-viscous) under 
periodic body acceleration in porous medium.    

In the present paper, a mathematical model has been developed and it has been 
shown that pressure drop in constricted tube increases as time increases but it reduces 
as slip-velocity increases. 
 
Stenosis Model 
By Mishra and kar [8], it is obvious that Stenosis (constriction) has no well defined 
geometrical configuration. In general, complex three-dimensional flow patterns have 
been developed near the stenosis which is virtually impossible to analyse. In this 
paper, ‘collar like’ stenosis model i.e. axisymmetric constriction in a long tube has 
been considered. It is true that the size of stenosis increases with time and attains 
some fixed geometrical configuration after some time. It is assumed that flow is 
unsteady and laminar, the artery is of constant diameter (2Ro) preceding and 
following the stenosis. 

Fig. 1 describes the stenosis geometry in the cylindrical polar coordinate 
system. It is further assumed that stenosis grows in an axially symmetric manner due 
to abnormal growth over a length 2Lo of the artery. Tondon and Katiyar [11] 
expressed the local radius (R) of the axisymmetric tube as a function of longitudinal 
coordinate x  and time t as  

,cos11
2 





















o

T
t

o L
xeRR        (1) 



Mathematical Modeling of Unsteady Flow Through 105 

 
 

where oRR   for ,0t  is constant (height of stenosis). 
T
t is time function and T is 

time constant for stenotic growth. However, it should be noted that although the 
growth rate as characterized by the parameter, T, is not important to the fluid 
mechanics of the problem, the rates at which variables such as pressure and shearing 
stress are changing may play an important role in certain cellular process. 
 
Analysis 
For two-dimensional flow, the governing equations for the flow of a Newtonian, 
viscous, incompressible fluid may be taken in the form in axial direction 
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and in the radial direction  
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while the continuity equation is 
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where u represents the axial velocity, v   the radial velocity,  the density, p the 
pressure and  the kinematic viscosity coefficient of the blood. 

During the initial development of the stenosis  1
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The governing equations can be approximated for mild stenosis as 
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and   .0
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r
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By applying the integral momentum method and using the continuity equation, 
integrating equation (5) over the cross-section of vessel, we obtain the integral 
equation as  
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At the surface, the boundary condition is Wuandv  0  (slip velocity) at 
.Rr   

The volume flux is given by 


R

drruQ
0

2 ,         (8) 

we choose the velocity profile in the form of as 
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U being the centre line velocity and A,B,C,D and E are constants to be determined 
from the velocity constraints. Using (9) and (9a), equation (8) may be rewritten as 
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The appropriate boundary conditions are 
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The first one describes the centre line velocity, second is the slip condition at 
the wall, third describes the viscous stress which is proportional to 

r
u



  and which 

should approach zero as the radius of the tube approaches zero when other forces are 
finite. 

The second radial derivative of u  at 0r  may be approximated by the fourth 
condition assuming the velocity profile to be nearly parabolic at the axis as 
represented by the Poiseuille;s profile  21ˆ Rru  . Finally, the fifth condition 
represents the validity of equation (5) at Rr  . The above written condition 
transformed in terms of variable   introduced in (9a) may be put as 
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Using conditions (11a) to (11e), the velocity profile is as follows 
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where 
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Here the velocity profile becomes a function of only one parameter  , which is 

function of pressure gradient  
x
p

 . 

Substituting (12) into (9b) and taking the integration we get 
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The parameter  may be determined from equation (7) as 
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In equation (15), neglecting the terms in velocity profile, higher than two 
because profile according to Bugliarello [9] due to specific diameter  m0.5  of the 
arteries is as 
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U is the average velocity of cross-section and 0
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Substitution of (16) into momentum integral equation (7) yields 
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Using 2RQU  and combining the resulting equation with equation (14). 
The pressure gradient is obtained in the form 
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The first term on the right hand side of equation (19) is due to the slip 
velocity, the second term is due to the viscous shearing stress, third due to rate of 
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change with time and fourth term is due to inertia of blood. 
In non-dimensional form, equation (19) read as 
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is the Reynolds number upstream from the stenosis, 0U being the average velocity. 
Substituting (14) and (19) into (12), we obtain the velocity distribution u as a 

function of r and x  as follows 
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The skin-friction w  is given by 

Rr
w r

u













          (23) 

Employing (22), we further derive the following expression for the skin-
friction 
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Results and Discussion 
The slip velocity has been taken to be equal to 10% the average velocity of the blood 
in a normal artery.  The calculation has been carried out at the locations defined by  

5.0,0
0


L
x  and    0.1 for three different values of Reynolds number, viz. 0Re 100, 

300 and 500 for different time parameters 
T
t 0 and 3. 

Figs. 2 and 3 depict the variation of the non-dimensional axial velocity of 
blood flow in the stenosed arterial segment with and without consideration of slip 
velocity. The variation of the non-dimensional axial velocity of blood flow in the 
stenosed arterial segment with and without consideration of the slip velocity has been 
depicted through figs. 2, 3, 4, 5 and 6, 7 for 0Re 100, 300 and 500 respectively for 
different values of time parameter. It may be observed that with the increase in 
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Reynolds number, the axial velocity in the presence of slip velocity at the well 
appreciably differ from the corresponding velocity in the absence of slip velocity. The 
difference between the velocity with slip velocity and velocity without slip is 
decreasing. Hence axial velocities are also increasing with time and Reynolds 
numbers at 5.0,0

0


L
x and 0.1 . 

 
 
Conclusion 
We shall use the following geometrical configuration of the stenosis, used b Young 
[10] and Tondon and Katiyar [11] as 
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The stenosis parameter andLR ,, 00 are taken to be related as 
 .124 00  RL        (27) 

The pressure drop in its non-dimensional form may be obtained by integrating 
equation (20) from the upstream end of stenosis to any point along it, is given by 
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where 0p represents the pressure at the upstream end 0Lx  of the stenosis. Table – 1 
gives the values of the non-dimensional pressure drop for 5002Re 000  RU  at 
different locations of the stenosed artery for four different values of the parameter for 
different values of ,2,1,0

T
t and 3. T The values obtained by Forrester and Young [8] 

have also been shown for comparison on idea of the extent to which the slip velocity 
affects the pressure drop. 

Dimensionless pressure drops between two axial positions one upstream and 
another downstream of stenosis are obtained by integrating equation (20) from 
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Integrating equation (30) between 04Lx  to 04Lx  , the pressure drop in 
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unobstructed artery is 
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The pressure drops have been calculated by the expressions (29) and (31) for 
stenosed and normal arteries using the data. These results have been shown in Fig. 8 
along with Forrester and Young [12] for the purpose of comparison. 

Fig. 8 depicts the variation of pressure drop with Reynolds numbers in the 
presence of stenosis. The velocities get elevated in comparison to Mishra and Kar’s 
model [8] of stenosis for unobstructed artery. These observations are in agreement 
with experimental observations of Forrester and young [12]. Hence slip velocity has a 
reducing effect on the pressure drop. 
 
TABLE – 1 Distributions of the non-dimensional pressure drop with time and 
slip velocity. 
 
 Time 

T
t  0U

W  0LX  
21  0  21  1  

With consideration  
of slip velocity 
(Present investigation) 

0 0.1 
0.25 
0.50 

0.694 
0.692 
0.688 

0.694 
0.692 
0.688 

0.694 
0.692 
0.688 

0.694 
0.692 
0.688 

1 0.1 
0.25 
0.50 

0.866 
0.863 
0.858 

1.114 
1.110 
1.103 

0.866 
0.863 
0.858 

0.694 
0.692 
0.688 

2 0.1 
0.25 
0.50 

0.948 
0.944 
0.939 

1.369 
1.364 
1.356 

0.948 
0.944 
0.936 

0.694 
0.692 
0.688 

3 0.1 
0.25 
0.50 

0.980 
0.976 
0.971 

1.486 
1.482 
1.472 

0.980 
0.976 
0.971 

0.694 
0.692 
0.688 

Disregarding slip velocity (Forrester 
and Young [8] )  

0 0 1.5 5.2 3.8 3.2 
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