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Abstract 

 
The collective epidemic model is a quite flexible that describes the spread of 
an infectious disease of the Susceptible-Infected-Removed type in a closed 
population. In the present paper a necessary and sufficient condition is derived 
that generates the weak convergence of the law of this variable to a mixed 
poisson distribution when the initial susceptible population tends to infinity 
provided that the out break is severe in a certain sense. 
 
Keywords: Collective epidemic model,, Mixed Poisson law, Branching 
Process, PLT 
 
2000 Mathematics Subject Classification Numbers: 60G20 

 
 
Introduction 
In the mathematical theory of epidemics, an important class of models is concerned 
with infectious disease of the S(Susceptible)-I(Infected)-R(removed) type. A closed 
population contains initially n susceptible individuals and m infected individuals. All 
the infective initial or subsequent are supposed to behave independently.Each of them 
stays infectious during a certain period of time of random length. After that period it 
is immune in a permanent way and may thus be regarded as removed from the 
infectious process. While infected an individual is able to transmit the infection to 
others.A susceptible if ever contacted by an infective is infected and becomes 
immediately infectious. 
  Consider any fixed subject of k susceptible among the n initial ones 1  k  n. It 
is assumed that any fixed infective does not transmit the infection during its whole 
infectious period within such a group of k susceptible with a probability q(k) that 
depends only on the size k of the group(and possibly on n).These q(k)’s are fixed and 
constitute the n parameters of the model. 
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  The collective epidemic terminates at some finite time A as soon as there are no 
more infective present in the population. Then the ultimate number of susceptible 
surviving the disease denoted by S(A) say. For simple infection the parameters q(k) 
can be written as functions of a small number of epidemic components. Any given 
pair of individuals is now assumed to make contacts at the points of a Poisson process 
with rate   all these processes being independent. Moreover any infective infectious 
during a period of random length iD  all the iD ‘s being i.i.d and distributed as the 
variable D say. 
 We then get 
 ( ) [exp( )], 1q k E k D k n     
 In particular the so called general epidemic corresponds to the special case where 
D is exponentially distributed with parameter  , here thus ( ) / ( ).q k k     
Moreover aslong as S(A) is concerned the model covers another standard model 
known as the Reed-Frost epidemic which is obtained by  
 Supposing that D is equal to some constant d; this yields 

 ( ) exp( ).kq k q withq d    
 For the collective model the exact distribution of S(A) was obtained and studied 
by Picard and Lefevre(1990). Martin-Lof(1986)established the existence of a 
threshold phenomenon together with a branching or Gaussian limit approximation. 
The problem examined in the present paper is the alternative approximation of S(A) 
by a mixed Poisson law. 
  Also Daniels(1967) showed for the general epidemic under some conditions S(A) 
can have a Poisson-like behavior. Later Ball and Barbour(1990) applied the Stein-
Chen methodology to derive a Poisson approximation with an order of magnitude for 
the model of Martin-Lof(1986). Recently Lefevre and Utev(1995) obtained a 
necessary and sufficient condition that guarantees the validity of such a Poisson limit 
for thegeneralized epidemic. Our purpose here is to go further in this subject by 
deriving now a mixed Poisson approximation for the final state of the collective 
epidemic. 
 
 
Branching process 
Definition1 
Let the random variables 0 1 3, , ,......, ...nx x x x  denote the size of (or the number of 
objects in) the ,1 ,2 .....th st ndo  generation respectively. Let the probability that an 
object(irrespective of the generation to which it belongs) generates k similar objects 
be denoted by 0, 0,1, 2,3..... 1k k kp where p k p   . 
 The sequence{ , 0,1,2,3......}nx n   constitutes a Galton-Watson branching process 
with offspring distribution { kp  }. 
 Properties of generating functions of Branching process. 
 We have 
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 Let ( ) Pr{ } k k
r k

k k
P s k S P S     be the p.g.f of { }r  and let  

 ( ) Pr{ } , 0,1, 2.....k
n n

k
P s X k s n   be the p.g.f of { }nx . 

 We assume that 0 1x  , clearly 0 1( ) ( ) ( ).P s S and P s P s   
 We start by associating with the collective epidemic an equivalent model of 
branching type. By equivalent we mean that the final susceptible state ( )nS   can be 
obtained as the first-crossing level of some decreasing branching model in a linearly 
decreasing barrier.  
 Let .1 ,2 ,{ , ,...... }n n n nz z z  be a family of n exchangeable Berenoulli random variables 
with parameters ( ),1 .nq k k n   For t=1, 2, 3, …. Let ,1 ,{ (t),......z ( )}n n nz t  be i.i.d 
copies of that family. 

 The Markov Chain 
( 1)

,
1

{ ( ), 0} (0) ( ) ( ), 1.
nx t

n n n n i
i

x t t defined by x n and x t z t t




     

 This chain is decreasing overtime.Its transient distribution is given below. 
 
Lemma1 
 Foe each 1t   

 
 

( )
( ) ,1tn

n

x t n
E q t k n

kK
   

     
  

 

ie (t)nx  is distributed as the sum of n exchangeable Bernoulli random variables with 

parameters (k) ,1 .t
nq k n   

 
Proof 
Let ( )

,
j

n iz  denote the indicator of the event ( susceptible i escapes infection from 
infective j during the epidemic spread). From the definition of the model we see that 
each vector ( ) ( )

,1 ,{ ,..... }j j
n n nz z  is a family of n exchangeable Bernoulli random 

variables and all the vectors are i.i.d copies of the family ,1 ,{ ,.... }n n nz z say with

,1 ,2 ,( ) (z ....... 1) ,1 (1)n n n n kq k P z z k n         
 At this point we emphasize that the probabilities (1) corresponds to the parameters 
usually introduced when constructing the joint law of n exchangeable Bernoulli 
random variables ,1 ,{ ,...... }.n n nz z  In particular consider the partial sums 

, ,1 ,.... 1 .n u n n ux z z u n      We have the distribution ,n ux  when specified by its 

binomial moments is given by , ( ) 1 .n u
n

x u
E q k k u

kk
   

     
  

 Hence for t=1 the 
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statement of lemma is true. For t 2  we obtain that
( ) (t) ( 1)

/ (t 1) ( )
k

n n n
n n

X t X X t
E E E X E q k

k k
                  

        
 

 Which leads to the proof of the lemma by induction. 
 To make the link with the epidemic model consider the decreasing line 1nn m   
and let nT  be the first time when the branching model crosses the line 

inf{ 0 : ( ) }n n nT t x t n m t      
 Clearly 1 n nT n m   . 
 
Proposition 1 
 The process { ( ), 0}nx t t   is a decreasing Markov chain with 

 1

(t) (n, , ), 1 (2)
t

n d n
s

X MB Q s t


    

 At time nT , the state ( )n nX T  has the same law as the variable ( )ns   which is 
provided by the following n relation 

 

( )( )
{ / [ ( )] } 1 (3)m n nn n n m X Tk

n

X T n
E E Q k n

kk
    

      
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Proof 
 The first assertion is obvious from  
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 The law (2) for ( )nX t  is obtained from 

 ,t( ) ( ( 1), ) , 1n d n nX t MB X t Q t   by induction and well known fact that  

 ( ( , ), v) ( , )dMB B l u B l uv from (2) we get 1 k n that   

 

( )
( ) , 0

tn k
n

X t n
E E Q t

kk
    

        
   

 
 Which shows that the process 
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( ) , 0

tn k
n

X t
E Q t

k
            

 

 Forms a martingale. 
 Now from 

  inf : ( )n n nT t t X t n m     

 nT is a Markov time and applying the optional stopping theorem that yields the n 
relation (3). 
 These constitutes a triangular set of n linear equations in the n ultimate state 
probabilities  ( )n nP S T k , 1 .k n  The probability for k=0 follows. Finally we 
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note that the system (3) is identical with n relation providing the law of ( )nS  . 
 This leads to the following proposition. 
 
Proposition 2 
The branching model intersects the barrier at .nT  That is (T ) (4)n n n nX n m T   
. 
 Furthermore ( )n nX T  has the same distribution as ( )nS   which is provided by n 
relation 

 
  ( )( )

/ ( ) ,1 k nn nn m Sn
n

S n
E q k

kk
               

     
 

 This representation has a simple interpretation. 
 Returning to the epidemic model we make a change of time scale and we define a 
new artificial time t=1, 2, ….as the cumulative number of removals in the course of 
real time. 
 Put (0) ( ) , 1n nX nand let X t t   denote the number of individuals that escape 
infection contacts with the first t infective removed. Moreover put 

(0) ( ), 1n n nI m and let I t t   be the number of infected individuals still present after 
the thr  removal.. By construction ( ) ( ) .n n nt X t I t n m     Thus the first time when 
there are no more infective present in the population is quite identical with nT  and (4) 
does not hold true. We then feel intuitively that ( ) ( ) .n n nX T and S areequidistributed  
 
 
Conclusion 
Hence we conclude that ( )n nX T  does satisfy a Poisson Limit Theorem. 
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