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Abstract 
 
A branching processes approximation for the spread of a Reed-Frost 
epidemic on a network with tunable clustering is derived. The 
approximation gives rise to expressions for the epidemic threshold and 
the probability of a large outbreak in the epidemic. A random 
intersection graph is constructed by assigning independently to each 
vertex a subset of a given set and drawing an edge between two 
vertices if and only if their respective subsets intersect. The 
distribution of the degree of a given vertex is characterized and is 
shown to depend on the weight of the vertex. Moreover, we provide a 
deterministic approximation of the bivariate process ofsusceptible and 
infective individuals, valid when the number of initially infective 
individuals is large. These results are used in order to derive the basic 
reproduction number and the asymptotic final epidemic size of the 
process. The model is described in the framework of random graphs. 
 
Keywords: Epidemics,random graphs, clustering, degree distribution, 
branching processes, epidemic threshold, Reed-Frost. 

 
 

1. Introduction 
Let us consider a simple stochastic discrete time model of a so-called SIR epidemic, 
that is, an epidemic where individuals receive lifelong immunity after having 
recovered from the disease. Imagine a closed population consisting of n individuals, 
where each individual has a random number of acquaintances. Let the ith individual 
have ܦ௜ friends, the variables ܦ௜ being identically distributed and almost independent, 
and suppose that two friends rarely have other friends in common. Now introduce an 
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infectious disease into the population by infecting ܽ individuals. If a susceptible 
individual meets an infectiveacquaintance at time t, then she will become infective at 
time t+1, and the infective will have recovered at this time point, now being immune to 
the disease. For instance, they typically have power law degree sequences, that is, the 
fraction of vertices with degree ݇ is proportional to ݇⥾ for some exponent ⥾ > 1. 
Furthermore, many networks are highly clustered, meaning roughly that there is a large 
number of triangles and other short cycles. A related explanation is that human 
populations are typically divided into various subgroups- working places, schools, 
associations etc which gives rise to high clustering in the social network, since 
members of a given group typically know each other. 

Real-life networks are generally very large, implying that it is a time-consuming 
task to collect data to delineate their structure in detail. This makes it desirable to 
develop models that capture essential features of the real networks. A natural candidate 
to model a network is a random graph, and, to fit with the empirical observations, such 
a graph should have a heavy-tailed degree distribution and considerable clustering. The 
model makes it possible to obtain arbitrary prescribed values for the clustering and to 
control the mean and the tail behavior of the degree distribution. 

 
 

2. Reed-Frost Model 
The Reed-Frost model can easily be adapted to incorporate this type of heterogeneity 
by introducing a graph to represent the social structure in the population and then 
stipulating that infective individuals can only infect their neighbors in the social 
network. This modification makes the analysis of the model two-fold. Firstly, one 
wants to find a realistic model for the underlying social network, and, secondly, one 
wants to study the behavior of the epidemic on this graph. If the relation between the 
number of individuals and the number of groups is chosen appropriately, this leads to a 
graph where the amount of clustering can be tuned by adjusting the parameters of the 
model. 

 
 

3. Random Intersection Graph 
Let us consider ࣰ = {1, . .݊} be a set of n vertices and A a set of ݉ elements. For 
݌ ∈ [0,1], construct a bipartite graph (݌,݉,݊)ܤ with vertex sets ࣰ and A by 
including each one of the ݊݉ possible edges between verticesfrom ࣰ and elements 
from A independently with probability ݌. The random intersection graph (݌,݉,݊)ܩ 
with vertex set ࣰ is obtained by connecting two distinct vertices ݅, ݆ ∈ ࣰ if and only if 
there is an element ܽ ∈ A such that both i and j are adjacent to ܽ in B(݊,݉,  When .(݌
the vertices in ࣰ are thought of as individuals and the elements ofAas social groups, 
this gives rise to a model for a social network in which two individuals are joined by 
an edge if they share at least one group. We frequently borrow the terminology from 
the field of social networks and refer to the vertices as individuals and the elements of 
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A as groups, with the understanding that the model is of course much more general. 
The number of groups ݉=[݊ఈ] for some ߙ > 0. The probability that two individuals 
do not share a group in ܤ(݊,݉, is (1 (݌ −  ଶ)௠ . It follows that the edge probability in݌
,݉,݊)ܩ   is (݌

1 − (1 −   ଶ)௠ and hence the expected degree is݌
E[ܦ௜]=(݊ − 1) (1 − (1 −  (ଶ)௠݌

=(݊ − ଶ݌݉) (1 +  (3.1 ) ((ସ݌ଶ݉)݋
 
The expected degree bounded as ݊ →  ∞, let ݌ =  ଶfor some constant⧵(ଵାఈ)ି݊ߛ

ߛ > 0. We then have that E[ܦ௜] →  .ଶߛ 
 

Description of the model 
A generalization of the original random intersection graph where the edge probability 
 is random and depends on weights associated with the vertices. The model is defined ݌
as follows: 

Let us consider n be a positive integer, and define ݉ = ߚ,ߙ ఈ⎦ with݊ߚ ⎦ > 0. As 
before, take ࣰ = {1, . .݊} to be a set of ݊ vertices and A a set of ݉ elements. Also, let 
{ ௜ܹ}be an i.i.d. sequence of positive random variables with distribution F, where F is 
assumed to have mean 1 if the mean is finite. Finally, for some constant 0 < ߛ, set 

 
⋀ ௜ܹ݊ି(ଵାఈ)∕ଶ ߛ=௜݌ 1.  (3.2) 

 
Now construct a bipartite graph (݌,݉,݊)ܤ with vertex sets ࣰ and A by adding 

edges to the elements of A for each vertex ݅ ∈  ࣰ independently with probability ݌௜. 
The random intersection graph (ܨ,݉,݊)ܩ is obtained as before by drawing an edge 
between two distinct vertices ݅, ݆ ∈ ࣰ if and only if they have a common adjacent 
vertex ܽ ∈ A in (ܨ,݉,݊)ܤ. 

 
Proposition 3.1.1. 
Let ܦ௜ be the degree of vertex ݅ ∈ ࣰ in a random intersection graph (ܨ,݉,݊)ܩ with 
݉ = ߙ ௜ asin (3.2). If F has finite mean, then, for all values of݌ and [ఈ݊ߚ] > 0, we 
have that E[ܦ௜| ௜ܹ] → ߛߚଶ ௜ܹ as n → ∞. 
Proof: 
To prove the claim for vertex ݅ = 1.Let us define, 
 

௝ܹ
′ = ௝ܹ . ૚{ௐೕರ೙భ∕ర} and ௝ܹ

′′ = ௝ܹ  . ૚{ௐೕಭ೙భ∕ర}  ,  (3.3) 
 
and let ܦ′ and ܦ′′ denote the degree of vertex 1 when { ௝ܹ}௝ஷଵ are replaced by 

{ ௝ܹ
′} and { ௝ܹ

′′} respectively, that is, ܦ′ is the number of neighbors of 1 with weight 
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smaller than or equal to ݊ଵ∕ସ and ܦ′′ is the number of neighbors with weight larger 
than ݊ଵ∕ସ. Write ݌௝′  and ݌௝′′ for the analog of (3.2) based on the truncated weights. 

Now, conditional on the weights, the probability that there is an edge between 1 
andj is1 – (1− → [′′ܦ]௝)௠ . To see thatE݌ଵ݌ 0 as n→  ∞, we observe that 

 
1 – (1 − ′′ଵp୨݌݉ ≥ ௝′′)௠݌௜݌ = ߛߚ ଵܹ݊(ఈିଵ)∕ଶ݌௝′′ ,  (3.4) 

 
Summing the expectation of the right-hand side over ݆ ≠ 1, keeping ଵܹ fixed, 

gives 
E[ܦ′′] ≤ ݊ߛߚ(ఈିଵ)∕ଶ E[݌௞′′ ] (3.5) 
 
]ࡱߛ)ߛߚ ≥ ࢑ܹ

′′] + ݊(ଵାఈ)∕ଶ ߛ)ࡼ ௞ܹ ≥ ݊(ଵାఈ)∕ଶ )),  (3.6) 
 
Whereboth terms on the right hand side converge to 0 as n→  ∞ since F has finite 

mean. As for ܦ′, we have 
1 −  (1 − ′௝݌ଵ݌ )௠ = ଶߛߚ ଵܹW୨

′݊ିଵ + ܱ( ଵܹ
ଶ( ௝ܹ

′)ଶ ݊ିଶ),  (3.7) 
 
The sum over ݆ ≠ 1 of the expectation of the first term equals ߛߚଶ ଵܹE[ ௞ܹ

′ ], 
where E[ ௞ܹ

′ ] → E[ ௞ܹ]=1 and the sum of the expectation of the second term converges 
to 0. Since ܦ଴ = ′ܦ +  .′′ܦ 

 
 

4. The Epidemic Model and an Approximating Branching Process 
Let us consider a closed homogeneous population consisting of n individuals, labeled 
,ଵݒ ,ଶݒ  .୬, with a social structure represented by a random intersection graph  ࣡(௡)ݒ.
The Reed-Frost dynamics to assumed to be fixed an infection in this population. The 
social graph ࣡(௡) is assumed to be fixed throughout the spread of the infection. 
Furthermore, for simplicity, let us start with one single randomly selected infective 
individual at time 0, the rest of the population being susceptible. An individual that is 
infective at time t(t=0,1,) contacts each one of its neighbors in  ࣡(௡) independently 
with some probability ݌, and if a contacted neighbor is susceptible, it becomes 
infective at time t+1. The individuals that were infective at time t are removed from the 
epidemic process at time t+1 and take no further part in the spread of the infection. 

 
Lemma 4.1.1 
Let ݇ > 0 be such that 1/݇ > 2log(ߛߚଶ). As n → ∞, the probability that the subgraph 
of B(n) induced by ܥ(௡)(⎣klog n⎦), is a tree, tends to 1. 

 
Proof 
Let ܥ(௡) (t) by a sequence {ࣞ(௡) (ݐ): ≤ ݐ 0}, constructed in such a way that ܥ(௡) 
(t)=∪଴ஸ௦ஸ௧ ࣞ(௡)(s). For odd t, the set ࣞ(௡)(t) will consist of groups and for even t by 
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individuals. By definition, let us have ܥ(௡) (0)={ ଵࣰ}, so necessarily ࣞ(௡)(0) =  (௡)ܥ
(0). For odd t, the set ࣞ(௡)(t) is then constructed by choosing, independently for each 
individual in ࣞ(௡)(t− 1) , a Binomial (݉,ߛ/݊) distributed number of distinct groups 
in A, and, likewise, for even t, let us construct ࣞ(௡)(t) by choosing, independently for 
each group in ࣞ(௡)(t − 1), a Binomial (݊,  distributed number of distinct (݊/ߛ
individuals in ࣰ. Let ܺ(௡) be a compound binomial random variable with generating 
function  

(ݏ)݃ = −1)=[௑(೙)ݏ] ࡱ  ఊ
௡

+  ఊ
௡

 (1− ఊ
௡

+  ఊ
௡
 ௡)௠,  (4.1)(ݏ

And let {ܺ(௡)(ݐ) : ݐ ≥ 0 } be a branching process with offspring distribution ܺ(௡). 
Furthermore, write ܻ(௡)(ݐ)=∑ ܺ(௡)௧

௦ୀ଴  for the total progeny of the branching process (ݏ)
at time t. Then, for even t, the number of individuals that have been chosen in the 
construction of the process ܥ(௡) (t), has the same distribution as ܻ(௡)(2/ݐ), and the 
number of groups that have been chosen is strictly smaller than ܻ(௡)(2/ݐ). 

Let us consider ߤ௡:=E[ܺ(௡)]=ߛଶ݉/݊ and note that ߛߚଶ(1 − ଵ
௡
) ≤ ௡ߤ   ≤  ଶ, soߛߚ 

௡ߤ  → ݊ ଶ asߛߚ=: ߤ  → ∞. In branching process theory, we have that ߤ௡ି௧ܺ(௡)(t) 
→  ܹ(௡) almost surely as ݐ → ∞, where ܹ(௡) is a random variable with ܹ(௡) ≡ 0 if 
and only if ߤ௡  ≤ 1. Furthermore, ܹ(௡)  → ܹ in distribution as ݊ → ∞, where W is 
the corresponding limiting random variable for the branching process {ܺ(ݐ): ݐ ≥ 0} 
with offspring generating function E[ݏ௑(ଵ)] =exp{ߛߚ(݁ఊ(௦ିଵ) − 1)}. Thus, 

 
 ܺ(௡)(ݐ) = ௡௧ߤ (ܹ(௡)+ ݋௧(1))  (4.2) 
 
௡௧ߤ=  (ܹ + ௡(1)݋  ௧(1))  (4.3)݋ +
 
≤ ௧ߤ  ൫ ௡ܱ(1) +  ܱ௧(1)൯,  (4.4)  
 

where ݋௫(. ) and ௫ܱ(.) is the usual order notation when ݔ → ∞.  
It follows that ܻ(௡)(ݐ) ≤ ߤ௧  ൫ ௡ܱ(1) +  ܱ௧(ݐ)൯, and, ݐ = with ଵ ⎦݊݃݋݈݇ ⎣

௞
>

 (4.5). ,{0,ߤ 2log} ݔܽ݉
We get, 

 ܻ(௡) ( ⎣ ݈݇݊݃݋⎦ ) ≤ ݁௟௢௚ఓ⎣௞௟௢௚ ௡⎦ ௡ܱ(log n)  (4.6) 
 
 ௡(√݊).  (4.7)݋=
 

Now note that, if all individuals and groups that have been chosen in the 
construction of ܥ(௡) (t) are distinct, then clearly the subgraph of B(n) induced by ܥ(௡) 
(t) is a tree. Thus the probability in the statement of the lemma is greater than 
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∏  (1 − ௞
௡

௒(೙)(⎣ ௞௟௢௚௡⎦)
௞ୀଵ  ) ( 1−  ௞

௠
 ) =exp { ∑ (log(1 − ௞

௡
௢(√௡)
௞ୀଵ ) +

log(1− ௞
௠

) )}  (4.8) 

=exp { − ( 1 + ଵ
ఉ

 ) ∑ (௞
௡

௢(√௡)
௞ୀଵ +O (௞

మ

௡మ
) ) }  (4.9) 

=exp{(1)݋} → 1. 
 
 

5. Final Outcome of the Epidemic 
The social network is a random intersection graph with ߙ = 1.There are no rigorous 
results concerning the component structure in a random intersection graph with ߙ =
1.The size of the largest component in a random graph are derived by heuristic means 
and it is observed that the relative final size of the giant component seems to decrease 
as the clustering in the graph increases. 

Let us consider an arbitrary graph with n vertices and ݇ = ܱ(݊) edges and assume 
that the clustering equals 1. This implies that all subgraphsare complete. Hence, with 
݊௠௔௫ denoting the size of the largest subgraph, wehave that the number of edges in the 
maximal subgraph is ൫௡೘ೌೣ

ଶ ൯. It follows that ݊௠௔௫  ≤  ܱ(√݇) = ܱ൫√݊൯, that is, the 
relative size of the largest component tends to zero. 

 
 

6. Clustering Coefficient 
The adjacency relations between actors in real networks are not statistically 
independent events. Often, chances of a link ߭′~߭′′ increase as we learn that actors ߭′ 
and ߭′′ have a common neighbor, say, ߭. As a theoretical measure of such a statistical 
dependence, one can use the conditional probability 
 

ߙ =P (߭ᇱ~߭ᇱᇱ | ߭ᇱ~߭, ߭ᇱᇱ~߭),  (6.1) 
 
The empirical estimates of the conditional probability ߙ, 
 

ොߙ = ݊ିଵ ∑ ேయ(జ)
ேమ(జ)జఢ௏  andߙො =∑ ேయ(జ)ഔചೇ

∑ ேమ(జ)ഔചೇ
  (6.2) 

 
are called the clustering coefficient and the global clustering coefficient, 

respectively. Here ݊ denotes the number of vertices of a graph, ଷܰ(߭) is the number of 
unlabeled triangles having vertex ߭, ଶܰ(߭) is the number of unlabelled 2-stars with the 
central vertex ߭. The term clustering coefficient is used exclusively for the conditional 
probability ߙ. 

In the random graph ܩ௦(݊,݉,ܲ), the conditional probability ߙ does not depend on 
the choice of ߭, ߭ᇱ, ߭ᇱᇱ. It does not depend on ݊ either. We write ߙ =  in order (݌,݉)௦ߙ
to indicate the dependence on ݏ,݉ and ܲ.The uniform random intersection graph 
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 where, for large ݉, the asymptotics of the clustering coefficient is simple (௫ߜ,݉,݊)௦ܩ
and transparent. 

 
 

6.1 Clustering coefficient and degree 
Let us consider a sequence of sparse random intersection graphs {ܩ௦(݊,݉,ܲ)}௠ with 
nonvanishing clustering coefficient and nondegenerateasympototic vertex degree 
distribution. The clustering coefficient 

∗ߙ =  P (इଶ ~इଷ |इଵ ~इଶ, इଵ ~ इଷ),  (6.3)=(ܲ,݉,݊)∗ߙ
 
of a passive random intersection graph ܩଵ∗(݊,݉,ܲ). In particular, that 
 

(ܲ,݉,݊)∗ߙ = ఉ∗మ௠షభ(۳(௑భ)మ)యା۳(௑భ)య
ఉ∗(ா(௑భ)మା ۳(௑భ)య

+ 0(1),  (6.4) 
 
)ଵ , provided thatEି݉݊=:  ∗ߚ ଵܺ)ଶ > 0 and E( ଵܺ)ଶ = → ݊,݉ as (ଶ݊ିଵ݉)݋  ∞.  
 
 

7. Clustering for a Power Law Weight Distribution 
When ߙ = 1, the clustering is given by  

(ܩ)ܿ = 1)]ࡱ + ߛߚ  ௞ܹ)ିଵ] (7.1) 
Here we investigate this expression in more detail for the important case that F is a 

power law. More precisely, we take F to be a Pareto distribution with density 
 

(ݔ)݂ = (ఒିଶ)ഊషభ

(ఒିଵ)ഊషమ
≤ ݔ ఒforିݔ   ఒିଶ

ఒିଵ
  (7.2) 

 
When ߣ > 2, this distribution has mean 1, as desired. The asymptotic clustering 

 is givenby the integral (ܩ)ܿ
 

 (ఒିଶ)ഊషభ

(ఒିଵ)ഊషమ∫ (1 + ଵஶି(ݔߛߚ
ഊషమ
ഊషభ

 (7.3) ݔ݀ ఒିݔ 

 
Defining u :=(ߣ − 2) ൫ݔ. ߣ) − 1)൯,⁄  we obtain 
 

(ܩ)ܿ = ଵ
ఉఊ

 (ఒିଵ)మ

(ఒିଵ) ∫ ࣯ఒିଵଵ
଴  ( 1 +  ୳

ఉఊ
 (ఒିଵ
ఒିଶ

) )ିଵ ݀(7.4) ,ݑ 
 
=: ଵ

ఉఊఒ
 (ఒିଵ)మ

(ఒିଶ)
;ߣ,ଵ ( 1ܨ2  1 + −;ߣ ଵ

ఉఊ
( ఒିଵ
ఒିଶ

 ) ), (7.5) 
 

where 2ܨଵ is the hypergeometric function. For ߛߚ ≥ ߣ ) − 1 ∕ ߣ ) − 2), a series 
expansion of the integrand yields that 
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(ܩ)ܿ  = ଵ
ఉఊ

(ఒିଵ)మ

(ఒିଶ)
 ∑ (ஶ

௞ୀ଴ − ଵ
ఉఊ

 ( ఒିଵ
ఒିଶ

 ) )௞ ଵ
௞ାఒ

 , (7.6) 
 
=: ଵ

ఉఊ
(ఒିଵ)మ

(ఒିଶ)
Φ (− ଵ

ఉఊ
 ( ఒିଵ

ఒିଶ
 (7.7) ,( ߣ,1, ( 

 
where Φ is the Lerch transcendent. Furthermore, when ߣ is an integer, we get 
 

(ܩ)ܿ = (ఒିଶ)ഊషభ

(ఒିଵ)ഊషమ
ఒିଵIn (1(ߛߚ−)]  + ఒିଵ

ఉఊ(ఒିଶ)
 )+∑ (ିఉఊ)ഊషభష೗

௟
ఒିଵ
௟ୀଵ  

(ఒିଵ
ఒିଶ

)௟ ],. (7.8) 
 

The clustering depends on ߣ and ߛߚ respectively. For any ܿ ߳ (0.1) and a given tail 
exponent ߣ, we can find a value of ߛߚ such that t he clustering is equal to c. 

Many real networks are “small words”, meaning roughly that the distances 
between vertices remain small also in very large networks. It is interesting to study the 
relation between the distances between vertices, the degree distribution and the 
clustering in the current model. 
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