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Abstract 
 

The dynamics of a predator -prey interaction model is studied here considering 
different growth functions of prey and including a discrete time delay to model 
the time lags between the capture of the prey and its conversion to viable 
biomass. Linear stability analysis reveals that in the absence of delay for the 
monotonic growth function of prey, the coexistence equilibrium is a centre, 
but if the growth function of prey is logistic, then the coexistence equilibrium 
is locally asymptotically stable if Kd β<  and it does not exist if Kd β> . It 
is shown that if 00 >=ττ , periodic solution arises in case of the monotonic 
growth function of prey as Hopf bifurcation occurs without any condition. In 
the case of the logistic growth of prey when 00 >=ττ  , the periodic solution is 
possible through Hopf bifurcation under certain conditions. 

 
Keywords: Delays, Biomass, Stability, Periodic Solution, Hopf bifurcation. 

 
 
Introduction 
In the real world, the biosphere is an important zone for biological activities that are 
mainly responsible for the changes in ecology and environment and the growth rate of 
different species mainly depend on ecology, carrying capacity of environment etc. As 
a consequence growth rate of the prey pieces is an important matter for the predator-
prey interaction model. The co-existence of interacting biological species has been of 
great interest in the past few decades and has been studied extensively using 
mathematical models by several researchers [1, 2, 3, 4, 5, 6]. A predator-prey model 
without delay was studied by Dubby [6] considering different growth of predator. 
Following [6], different growth functions of prey population are considered here. In 
many existing predator-prey ODE models [6, 13, 14, 15], the time delay for the 
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conversion of biomass from prey to predator population were ignored. The reality is 
that in the predator equation, the delay is often caused by the conversion of consumed 
prey biomass in to the predator biomass, may it be in the form of body size growth or 
reproduction. Fan and Wolkowicz [8] studied a predator-prey model in the chemostat 
with discrete time delay. Following [6, 7, 8, 12], a predator prey model is proposed 
including a discrete time delay to model the time lags between the capture of the prey 
and its conversion to viable biomass , considering different growth functions of prey. 
Moreover, the term τδ−e  is included in predator equation which accounts for predators 
those interact with prey at time t but die before giving reproduction (or growth) τ  
time units later (i.e. if we assume a constant death rate δ for those predators that 
survive in gestation period that means the probability of surviving between the time 
lags for converting biomass). 
 In population dynamics, a functional response of the predator to the prey density 
refers to the change in the density of prey attached per unit time per predator as the 
prey density changes. For simplicity, Holling type I form (i.e.

0,)())(( >= ββ txtxh  ) of functional response is considered for both cases. The 
main purpose of this, study is to analyze the dynamics of the predator –prey 
interacting population model due to different growth function, including discrete time 
delay for the capture of the prey and its conversion to biomass and the term τδ−e . 
Analyses are shown for monotonic growth function of prey in section -1 and logistic 
growth function of prey in section -2.  
 
 
Model formulation 
The proposed model is  

  )())(())(()(
tytxhtxg

dt

tdx
−=  

  )()())(()(
tydtytxhe

dt

tdy
−−−= − τττδ

 (1) 

  
 Subject to the following initial conditions: 

  0)0(),0,[,0)()( 11 >−∈≥= φτθθφθx  

  0)0(),0,[,0)()( 22 >−∈≥= φτθθφθy  (2) 
 
 Here )(tx  denote the density of prey population, )(ty  is the density of the 
predator population, ))(( txg  denote the growth function of prey population and 

))(( txh denote the functional response of the predator on prey, and d is the death rate 
of the predator population. Assume that the growth rate of predator depends only on 
the prey population. Two growth functions for the prey population are,  
(i) 0,)())(( >= rtxrtxg  
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(ii) 0,0,))(1()())(( >>−= Kr
K

tx
txrtxg , 

 
where K is the carrying capacity of the environment.  
 
 
Section-1 
Considering the monotonic growth function of prey and Holling type I, functional 
response for predator, the Model (1) becomes 

  )()()()(
tytxtxr

dt

tdx β−=  

  )()()()(
tydtytxe

dt

tdy
−−−= − ττβ δτ  (1.1)  

 
Positivity of the solution 
It is important to show positivity for the system (1.1) as they represent prey- predator 
populations. Biologically, positivity implies that the population survives. For proof 
this, following Zhu and Zou [9], we have the following theorem: 
 
Theorem1.1. Let ( ) ( )2

21 ,]0,[)(),( +ℜ−∈ τθφθφ C  and ( ))(),( tytx  be any solution to 
system (1.1) with the initial conditions (2). Then we have the following: 
  0)(,0)( >> tytx  for 0>t . 
 
Proof: To prove 0)( >tx  for ),0[ ∞∈t , from the first equation in (1.1), it follows that  

  ( ) )()()(
txtyr

dt

tdx β−=   

  ( ) dttyr
tx

tdx )(
)(
)( β−=⇒  

  ( ) 0,0)(exp)0()(
0

>∀>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⇒ ∫ tdttyrxtx

t

β   

  0)( >⇒ tx  
 
 Now to prove that 0)( >ty  on ),0[ ∞ , suppose that there exists 0>t  such that

0)( =ty , and 0)( >ty  for ),0[ tt∈ . Then 0)( ≤ty� , [8]. From the second equation of 
(1.1), we have  

  )()()()( tydtytxety −−−= − ττβ τδ�  

  0)()()( >−−= − ττβ τδ tytxety�  ,  
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a contradiction, therefore 0)( >ty , ),0[ ∞∈∀ t . 
 
 
Equilibria and Stability Analysis 
The Model (1.1) has two equilibrium points: )0,0(1 =E  is a trivial equilibrium which 

is biologically meaningless and ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∗∗

ββ

τδ red
yxE ,,2 , is a coexistence 

equilibrium which is biologically meaning full. We are only interested here in 
analyzing the biologically meaningful coexistence equilibrium. 
 The linearization of (1.1) about an equilibrium ( )yx , given by 

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−− )(

)(00
)(
)(

0)(
)(

2

1

2

1

2

1

τ
τ

ββ
ββ

τδτδ tu

tu

xeyetu

tu

d

xyr

tu

tu

�
�

 (1.2) 

 
The associated characteristic equation is given by 

0det =⎥
⎦

⎤
⎢
⎣

⎡
−+−

−−−
−−−− λββ

βλβ
τλτδτλτδ xeedyee

xyr
 

( )( ) 02 =+−+−−−⇒ −−−− τλτδτλτδ βλβλβ eeyxxeedyr  

( ) ( )( ) 022 =+−−+++−−−⇒ −−−−−− xeedyreeyxxeedyr τλτδτλτδτλτδ βββλββλ  
 
Now we define  

( ) ( )( ) 0)( 22 =+−−+++−−−= −−−−−− xeedyreeyxxeedyrF τλτδτλτδτλτδ βββλββλλ  (1.3) 
 

At the equilibrium point ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∗∗

ββ

τδ red
yxE ,,2 , (1.3) becomes 

 
0

)( 22

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−=

−−

−−−−

β
β

β
β

ββ
βλ

β
β

β
βλλ

δτ
τλτδ

τλτδ
τδτδ

τλτδ

ed
eed

r
r

ee
reded

eed
r

rF

  

 ( ) 0)( 2 =+−+=⇒ −− τλτλ λλλ edreddF  (1.4) 
 
If 0=τ , then (1.4) becomes 

  ( ) 02 =+−+ rddd λλ  

  02 =+⇒ rdλ  
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  0βλ idri ±=±=⇒  
 
 Where 

  00 >= rdβ   
 
 When 0=τ , there are no real roots and two purely imaginary roots. Therefore, it is 
a centre. Now we can examine whether Hopf bifurcation will occur or not. 
 Consider, 
  rdrG += 2),( λλ  (1.5) 

  λ
λ

2=
∂
∂G  

  022 00
≠±=±=

∂
∂

±= rdii
G

i β
λ βλ  

  
λ

λ
∂
∂

∂
∂

−=
G

r

G

dr

d /  
λ2
d

−=  

  
dr

di

i

d

dr

d
i 2

0
2 0

0
±==∴ ±= β

λ
βλ ∓  

  0Re
0
=∴ ±= βλ

λ
idr

d  

 
 The transversality condition does not satisfy. Therefore, if 0=τ  Hopf bifurcation 
does not hold.  
 In case of positive delay, i.e. 0>τ  the characteristic equation for the lineralized 
equation around the point ( )∗∗= yxE ,2  is given by 

  0)()( =+ −λτλλ eQP  (1.6) 
 
 Where 

  λλλ dP += 2)(   

  drdQ +−= λλ)(  
  
 If 0>τ , Let 0, >= ωωλ i  be a purely imaginary root of (1.6). 

 Now substituting ωλ i=  in Eq. (1.6) 

 ( ) 0)()( 2 =+−+= −− τωτω ωωω ii edrieddiiF  

 0)sin(cos)sin(cos2 =−+−−+−⇒ ωτωτωτωτωωω idrididi  
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 ( ) ( ) 0sincoscossin2 =−−++−−⇒ ωτωτωωτωωτωω drddidrd  
 
 Now separating the real and imaginary parts we obtain the system of 
transcendental equations  

  0cossin)( 2 =+−−= ωτωτωωω rddR  (1.7) 

  0sincos)( =−−= ωτωτωωω rdddS  (1.8) 
 
 Squaring and adding (1.7) and (1.8) we get, 

  2242222 ddrd ωωω +=+  

  ( ) ( ) 022 =−+⇒ rddr ωω  
 
 But  

  ( ) ,02 ≠+ drω  as . 

  02 =−⇒ rdω  

  dr==⇒ 0ωω  , as . 
 
 Therefore we have a positive 00 >=ωω  such that equation (1.6) has purely 
imaginary roots. Eliminating )sin(ωτ  from (1.7) and (1.8) , we get 

  
drd

dr
22

22

)cos(
+
+

=
ω

ωωωτ   

 
 Then 0τ  corresponding to 0ω  is given by 

  ( )
( )dr

dr
22

0

2
0

0
0 arccos1

+
+

=
ω
ω

ω
τ  

 
Hopf- bifurcation 
We will now show that 

  
( ) 0Re

0

>⎥⎦
⎤

⎢⎣
⎡

=τττ
λ

d

d
 

 
 Note that all roots of (1.6) depend continuously on τ (see Busenberg & cooke, 
1993), and as τ  increase, a root of (1.6) may enter the right half plane only by 
crossing the imaginary axis( see. Beretta & Kuang 2002). Thus as 0>τ  increases, 
roots of (1.6) may cross the imaginary axis only through a pair of non zero purely 
imaginary roots. To see if there is any stability switch as τ  crosses 0τ , we take the 

0,0,0 >>> ωdr

0>ω
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help of some results by Cooke and Van den Driessche in Theorem 1 of [10]. We first 
look for purely imaginary roots of 0ωλ i= , 00 >ω  of (1.6). Equation (1.6) implies  

  ( ) ( )00 ωω iQiP =  
 
and this determines a set of possible values of 0ω . Our aim is to determine the 
direction of motion of λ  as τ  is varied. That is, we determine 

  
0

0

1

Re)(Re

ωλωλ τ
λ

τ
λ

ii d

d
sign

d

d
sign

=

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=⎥⎦

⎤
⎢⎣
⎡=Θ  

 
 Now, differentiating (1.6) with respect toτ , we get 

  ( ) ( )[ ] ( ) λτλτλτ λλ
τ
λλτλ −−− −=−−−+ edrd

d

d
drdeded2  

  ( )
( ) ( ) λ

τ
λλλλ

λ
τ
λ

τλ −
−

−
−
+

=⎟
⎠
⎞

⎜
⎝
⎛⇒ −

−

drd

d

edrd

d

d

d 21

 

  = ( )
( ) ( ) λ

τ
λλλλλ

λ
−

−
−

+−
+

drd

d

d

d
2

2  

 
 Therefore 

 ( ) ( )
0

2
2Re

ωλ
λ
τ

λλλλλ
λ

i
drd

d

d

d
sign

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

+−
+

=Θ  

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

+−
+

=
0000

2
0

2
0

02Re
ω
τ

ωωωωω
ω

idirdi

d

diii

di
sign  

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
−

+
+

=
00

2
0

3
0

2
0

02Re
ω
τ

ωωωω
ω

iirdd

d

id

di
sign  

 ( )( )
( )

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
−

−
+

−+
=

0
2
0

224
0

2
0

2
0

6
0

22
0

3
0

2
002Re

ω
τ

ωω
ωω

ωω
ωωω i

drd

irddd

d

iddi
sign  

 ⎥
⎦

⎤
⎢
⎣

⎡
+

−
+

+
= 2

0
224

0
2

2
0

2

6
0

4
0

2

2
0

24
02

ωω
ω

ωω
ωω

drd

d

d

d
sign  

 ⎥
⎦

⎤
⎢
⎣

⎡
+

−
+
+

= 22
0

4
0

2
0

2

22
0 12

rd

d
sign

ωωω
ω  
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 ⎥
⎦

⎤
⎢
⎣

⎡
++

−−+++
=

)()(
22

22
0

4
0

2
0

2

4
0

22
0

2222
0

22
0

4
0

rd

ddrdr
sign

ωωω
ωωωωω  

 0
)()(

2
22

0
4
0

2
0

2

2222
0

4
0 >⎥

⎦

⎤
⎢
⎣

⎡
++

++
=

rd

drr
sign

ωωω
ωω  

 
 We have  

  
( ) 0Re

00 ,

>⎥⎦
⎤

⎢⎣
⎡

== ττωωτ
λ

d

d
  

 
 Therefore, the transversality condition holds and hence Hopf-bifurcation occurs at 

00 , ττωω == .So as τ  increases i.e. 0ττ ≥ , a periodic solution will occur which is the 
case of Hopf-bifurcation. Hence if 0=τ , there is a pair of purely imaginary roots and 
its represent centre. When τ increases to 0τ  i.e. ( )0,0 ττ ∈ , there is another pair of 
purely imaginary roots. 
 
 
Section-2 
Now we consider the logistic growth function of the Prey and Holling type I , 
functional response for predator on prey population. The model (1) becomes 

  )()()(1)()(
tytx

K

tx
txr

dt

tdx β−⎟
⎠
⎞

⎜
⎝
⎛ −=  

  )()()()(
tydtytxe

dt

tdy
−−−= − ττβ τδ

 (2.1) 

 
 
Positivity of solutions 
Positivity of the system (2.1) can be easily proved as like as we proved for system 
(1.1). 
 
Equilibria and Stability Analysis 
The Model (2.1) has two equilibrium points: )0,0(1 =E  is a trivial equilibrium which 

is biologically meaningless and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= τδ

τδ

βββ
e

K

dred
E 1,2 , is a coexistence 

equilibrium which would be biologically meaningful iff 01 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− τδ

ββ
e

K

dr  i.e. 

⎟
⎠
⎞

⎜
⎝
⎛<

d

Kβ
δ

τ ln1  . For existence, this equilibrium point we need to be assumed 1>
d

Kβ
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. We are only interested here in analyzing the biologically meaningful coexistence 
equilibrium. 
 The linearization of (2.1) about an equilibrium ( )yx , given by 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−−−=⎥
⎦

⎤
⎢
⎣

⎡
−− )(

)(00
)(
)(

0

)21(
)(
)(

2

1

2

1

2

1

τ
τ

ββ
ββ

τδτδ tu

tu

xeyetu

tu

d

xy
K

x
r

tu

tu
�
�

 (2.2) 

 
The associated characteristic equation is given by 

0)21(det =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−+−

−−−−
−−−− λββ

βλβ
τλτδτλτδ xeedyee

xy
K

x
r  

( ) 02 2 =+−+−⎟
⎠
⎞

⎜
⎝
⎛ −−−⇒ −−−− τλτδτλτδ βλβλβ eeyxxeedy

K

rx
r  

( ) 022 22 =+−⎟
⎠
⎞

⎜
⎝
⎛ −−++⎟

⎠
⎞

⎜
⎝
⎛ +−−−−⇒ −−−−−− xeedy

K

rx
reeyxxeedy

K

rx
r τλτδτλτδτλτδ βββλββλ

 
 
Now we define  

( ) 0

22)( 22

=+−

⎟
⎠
⎞

⎜
⎝
⎛ −−++⎟

⎠
⎞

⎜
⎝
⎛ +−−−−=

−−

−−−−

xeed

y
K

rx
reeyxxeedy

K

rx
rF

τλτδ

τλτδτλτδ

β

ββλββλλ  (2.3) 

 

At the equilibrium point ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== ∗∗ τδ

τδ

βββ
e

K

dred
yxE 1,,2 , (2.3) becomes 

012

112)( 22

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−−=

−−

−−−−

β
β

ββ
β

β

βββ
βλ

β
β

ββ
β

β
λλ

δτ
τλτδτδτδ

τλτδτδ
τδτδ

τλτδτδτδ

ed
eede

K

dr
e

K

dr
r

eee
K

dreded
eede

K

dr
e

K

dr
rF

  

0
222

2 =−+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−⇒ −−−− τλτδτδτλτδτλτδτλ

βββ
λ

β
λ ee

K

dr
e

K

dr
ee

K

dr
edre

K

dr
edd  

02)(
22

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−=∴ −− τλτδτδτδτλ

ββ
λ

β
λλ ee

K

dr
dre

K

dr
e

K

dr
dedF  (2.4) 

 
 If 0=τ , then (2.4) becomes 

 02 22
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

K

dr
dr

K

dr

K

dr

ββ
λ

β
λ  
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 0
2

2 =−++⇒
K

dr
rd

K

dr

β
λ

β
λ  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±−=∴

K

rd
rd

K

dr

K

dr

βββ
λ

22

4
2
1

2
1  

 
We consider 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

K

d
rd

K

dr

K

dr

βββ
λ 14

2
1

2
1

2

1  and  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

K

d
rd

K

dr

K

dr

βββ
λ 14

2
1

2
1

2

2  

 
 Here the real part of 1λ  is negative, therefore the stability depends on another 
eigen value 2λ . 
 
Theorem 2.1: If 0=τ , then 2E  is locally asymptotically stable if Kd β< and 2E  
does not exists if Kd β> . 
 In case of positive delay i.e. 0>τ  , the characteristic equation for the lineralized 
equation around the point 2E  is given by 
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 If 0>τ , Let 0, >= ωωλ i  be a purely imaginary root of (2.5). 
 Now substituting ωλ i=  in Eq. (2.5) 
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 Now separating the real and imaginary parts we obtain the system of 
transcendental equations  
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Squaring and adding (2.6) and (2.7) we get, 
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 This expression (2.8) is always true as all the parameters here are positive; 
therefore we have a positive 00 >=ωω  such that equation (2.5) has a purely 
imaginary root. We can also find the value of 0τ  corresponding to 0ω  in a similar 
fashion that we have already discussed in section 1.  
 
Hopf- bifurcation 
We will now show that 
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 This will signify that there exists at least one eigenvalue with positive real part for
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0ττ > . Also, the conditions for Hopf bifurcation [11] are then satisfied yielding the 
required periodic solution. To see if there is any stability switch as τ  crosses 0τ , we 
take the help of some results by Cooke and Van den Driessche in Theorem 1 of [10]. 
We first look for purely imaginary roots of 0ωλ i=  of (2.5). Equation (2.5) implies  
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and this determines a set of possible values of 0ω . Our aim is to determine the 
direction of motion of λ  as τ  is varied. That is, we determine 
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 Therefore, the transversality condition will hold and hence Hopf-bifurcation will 
occur at 00 , ττωω == . i.e.  
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Result and discussion 
It is broadly well known that past history as well as current conditions can influence 
population dynamics and such interactions has motivated the introduction of time 
delays in population growth models. In most of the natural systems, population of one 
species does not respond instantaneously to changes in the environment or the 
interactions with other species of populations within the community. It is believed 
that the time delays have a destabilizing effect in the models of population dynamics 
and often time delays are responsible for the population oscillations in constant 
environment. Discrete time delay has ability to alter the dynamical behavior of a 
model system significantly. In this paper, a mathematical model has been proposed 
and analyzed to study the dynamics of a predator-prey system due to the time lags for 
the conversion of biomass and considering different growth functions of prey. The 
model has been analyzed in two cases: first when growth function of prey population 
is monotonic and second when growth function of prey population is logistic. In this 
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paper, we have also made an attempt to understand the effect of gestation delay on 
dynamical behavior of a prey–predator system. Gestation delay is the time interval 
between the moments when an individual prey is killed and when the corresponding 
biomass is added to the predator population. As the growth rate of predator species 
solely depends upon the amount of biomass added (in predator’s population density) 
due to the prey killing, the presence of gestation delay in predator’s growth affect the 
abundance of predators, as there are some possibilities of predator’s death during this 
gestation period before going to reproduction or growth. Linear stability analysis 
reveals the fact that for the monotonic growth rate of prey, in the absence of delay the 
coexistence equilibrium is a centre. But for the logistic growth function of prey, it is 
locally asymptotically stable if Kd β<  and it does not exist if Kd β> . Biologically 
it implies that for maintaining coexistence between the predator- prey interacting 
populations, balance growth rate of prey and the carrying capacity of an environment 
is a crucial matter. Oscillation in population density is quite natural and commonly 
observed in most of the prey–predator based ecosystems. We observed that for the 
monotonic growth rate of prey, in absence of delay, Hopf bifurcation is not possible 
but in case of positive delay Hopf bifurcation is possible without any condition and 
there is a periodic solution which is the case of Hopf bifurcation. Biologically it 
implies that gestation delay is crucial for a predator-prey interacting system. In case of 
the logistic growth of prey, Hopf bifurcation is possible under the conditions  
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